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ORIGINAL RESEARCH
ADULT BRAIN

Disorder in Pixel-Level Edge Directions on T1WI Is Associated
with the Degree of Radiation Necrosis in Primary and

Metastatic Brain Tumors: Preliminary Findings
X P. Prasanna, X L. Rogers, X T.C. Lam, X M. Cohen, X A. Siddalingappa, X L. Wolansky, X M. Pinho, X A. Gupta, X K.J. Hatanpaa,

X A. Madabhushi, and X P. Tiwari

ABSTRACT

BACKGROUND AND PURPOSE: Co-occurrence of local anisotropic gradient orientations (COLLAGE) is a recently developed radiomic
(computer extracted) feature that captures entropy (measures the degree of disorder) in pixel-level edge directions and was previously
shown to distinguish predominant cerebral radiation necrosis from recurrent tumor on gadolinium-contrast T1WI. In this work, we sought
to investigate whether COLLAGE measurements from posttreatment gadolinium-contrast T1WI could distinguish varying extents of
cerebral radiation necrosis and recurrent tumor classes in a lesion across primary and metastatic brain tumors.

MATERIALS AND METHODS: On a total of 75 gadolinium-contrast T1WI studies obtained from patients with primary and metastatic brain
tumors and nasopharyngeal carcinoma, the extent of cerebral radiation necrosis and recurrent tumor in every brain lesion was histopatho-
logically defined by an expert neuropathologist as the following: 1) “pure” cerebral radiation necrosis; 2) “mixed” pathology with coexis-
tence of cerebral radiation necrosis and recurrent tumors; 3) “predominant” (�80%) cerebral radiation necrosis; 4) predominant (�80%)
recurrent tumor; and 5) pure tumor. COLLAGE features were extracted from the expert-annotated ROIs on MR imaging. Statistical
comparisons of COLLAGE measurements using first-order statistics were performed across pure, mixed, and predominant pathologies of
cerebral radiation necrosis and recurrent tumor using the Wilcoxon rank sum test.

RESULTS: COLLAGE features exhibited decreased skewness for patients with pure (0.15 � 0.12) and predominant cerebral radiation
necrosis (0.25 � 0.09) and were statistically significantly different (P � .05) from those in patients with predominant recurrent tumors,
which had highly skewed (0.42 � 0.21) COLLAGE values. COLLAGE values for the mixed pathology studies were found to lie between
predominant cerebral radiation necrosis and recurrent tumor categories.

CONCLUSIONS: With additional independent multisite validation, COLLAGE measurements might enable noninvasive characterization
of the degree of recurrent tumor or cerebral radiation necrosis in gadolinium-contrast T1WI of posttreatment lesions.

ABBREVIATIONS: COLLAGE � co-occurrence of local anisotropic gradient orientations; CRN � cerebral radiation necrosis; Gd-C � gadolinium-contrast; RT �
recurrent tumor; TCIA � The Cancer Imaging Archive

Currently �200,000 patients in the United States annually un-

dergo chemoradiation as a standard-of-care treatment in pri-

mary and metastatic brain tumors.1 Following chemoradiation

treatment, these patients typically undergo regular MR imaging

(usually comprising T1WI, T2WI, FLAIR) for monitoring signs of

tumor recurrence. A major clinical challenge in evaluating these

posttreatment MR images is the differentiation of these lesions as

recurrent tumor (RT) or cerebral radiation necrosis (CRN).2

CRN is an irreversible radiation-induced injury caused by aggres-
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sive radiation treatment and is challenging to diagnose on con-

ventional MR imaging due to its close visual resemblance to tu-

mor recurrence. The differentiation is further complicated by the

simultaneous presence of varying proportions of CRN and recur-

rence/residual tumor confounding the diagnosis on imaging.

Currently, the only definitive diagnosis of CRN rather than RT is

via surgical intervention, followed by extensive histopathologic

evaluation for establishing the extent of CRN or tumor recurrence

in a lesion. On the basis of the extent of CRN intermixed with

tumor, lesions can be characterized on histopathology as “pure”

CRN (complete absence of tumor tissue), “predominant” CRN

(�80% CRN), predominant RT (�80% tumor, �20% CRN),

and “mixed” CRN (between 30% and 70% CRN). The current

criterion standard diagnostic test for evaluating lesions posttreat-

ment is surgical resection followed by extensive pathologic eval-

uation. Existing advanced noninvasive imaging protocols (ie, MR

spectroscopy and PET) are known have interreader variability

and have reported poor specificity in distinguishing RT from

CRN.3,4

Recently, a few radiomics (computational feature-extraction

approaches) studies in conjunction with routinely available MR

imaging sequences have attempted to capture lesion heteroge-

neity for survival prediction and response assessment in brain

tumors.5 Specifically, gray-level co-occurrence matrix-based

features from active tumor regions were found to be predictive

of brain tumor survival by Sottoriva et al.18 Gray-level co-

occurrence matrix-based features have also been shown to be

discriminative of phenotypes in glioblastoma.19 It has been

shown by Rathore et al20 that peritumoral radiomic signatures

could predict recurrence in glioblastoma and have further im-

plications in personalized radiation therapy planning. While

several of these recent studies have shown success in using

radiomic analysis for survival prediction, only a few studies4,21

have explored distinguishing posttreatment changes (ie, CRN and

pseudoprogression) from tumor recurrence using radiomic analysis.

In Prasanna et al,6 we presented a new radiomic feature,

co-occurrence of local anisotropic gradient orientations

(COLLAGE), that computes entropy (quantitative measure-

ment that captures the degree of disorder) in voxelwise gradi-

ent orientations on routine gadolinium-contrast (Gd-C)

T1WI. Specifically, we demonstrated that the COLLAGE en-

tropy feature allowed differentiation between predominant

CRN and predominant RT, with elevated expression of COLLAGE

(reflective of high disorder in intensity gradients) being associated

with tumor, and lower COLLAGE values, with RN.2 However, our

study7 and other studies8,9 that have previously attempted to distin-

guish CRN from RT on imaging have been limited to investigating

cases that were histologically identified as either predominant CRN

or predominant tumor. This limitation is because posttreatment

brain tumor lesions are rarely pure and largely exhibit a heteroge-

neous appearance owing to the prevalence of both CRN and tumor

(referred to as mixed pathology).

The objective of this study was to reliably characterize different

lesion pathologies of CRN and RT on routinely acquired post-

treatment Gd-C T1WI using radiomics. On the basis of our pre-

vious observations using COLLAGE in predominant CRN/RT

cases,6 in this feasibility study, we sought to investigate whether

COLLAGE measurements are capable of distinguishing extreme

(pure) from mixed pathologies for CRN and RT.

Specifically, in this study, we explored the association of

COLLAGE measurements on posttreatment Gd-C T1WI with the

extent of CRN and recurrent tumors across a cohort of 75 patients

histologically confirmed and treated for nasopharyngeal carci-

noma, primary, and metastatic brain tumors. Instances of pure

CRN were obtained from patients with nasopharyngeal carcino-

ma10; CRN is an adverse effect of radiation in nasopharyngeal

carcinoma because brain is a bystander during treatment. The

manifestation of CRN in nasopharyngeal carcinoma, unlike in

brain tumors, is unadulterated (pure) because there is no known

malignant tumor presence in these brain lesions. Additionally,

treatment-naïve brain tumor MR imaging from aggressive brain

tumors (ie, grade IV glioblastoma) represents instances of pure

tumor on imaging.

We investigated the following: 1) if and how first-order statis-

tics (mean, median, skewness, and kurtosis) of COLLAGE mea-

surements differ across different grades of pure, predominant,

and mixed CRN and recurrent tumor in primary and metastatic

tumors, and 2) whether these statistics provide improved discrim-

ination across different pathologies of RT and CRN than using

just MR imaging intensities alone.

MATERIALS AND METHODS
Study Population
For this study, we accrued imaging scans of patients who had been

diagnosed and treated for primary/metastatic brain tumors and

nasopharyngeal carcinoma. The studies of patients with brain tu-

mor were collected at the University Hospitals, Cleveland (site 1)

and University of Texas Southwestern (site 2), while the nasopha-

ryngeal carcinoma studies were obtained from the Tuen Mun

Hospital, Hong Kong (site 3), with all cohorts accrued between

1990 and 2014.

Preoperative MRIs of subjects with glioblastoma used under

the “pure tumor” category were made available for public down-

load from The Cancer Imaging Archive (TCIA). TCIA is an open

archive of cancer-specific medical images and associated clinical

metadata established by the National Cancer Institute and collab-

orating institutions in the United States. A total of 10 MR imaging

studies were randomly chosen from the TCIA cohort to be used as

controls for pure tumor cases to maintain class balance across all

categories.

A total of 75 studies were histologically confirmed with different

degrees of CRN and tumor (categorized as pure, predominant, or

mixed) in a lesion, details of which are provided in the Table. Inclu-

sion criteria for studies across the 3 sites were the following: 1) the

availability of 1.5 or 3T Gd-C T1WI, and 2) the pathology specimen

obtained by resection or by at least 2 biopsies via stereotactic guid-

ance for disease confirmation.

For sites 1 and 2, following the standard dose of concomitant

radiation and chemotherapy, the patients who presented with

suspicious posttreatment lesion artifacts, indicative of CRN or

RT, were identified. Forty-two cases were accrued from site 1,

consisting of 22 primary tumors identified as 12 predominant

tumors and 10 cases of predominant CRN, and 20 metastatic

tumors identified as 12 predominant tumors and 8 cases of pre-
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dominant CRN. Similarly, 10 studies were accrued from site 2,

with 7 primary and 3 metastatic tumors. Of the 7 cases of primary

tumors, 4 had predominant tumor, 1 case was predominant CRN,

and 1 case each had mixed pathologies of 30% and 75% CRN,

respectively. The 3 metastatic cases consisted of 1 case each of

predominant tumor, predominant CRN, and mixed pathologies.

Site 3 consisted of patients with pure CRN (n � 13) originally

diagnosed with nasopharyngeal carcinoma who were symptom-

atic of CRN in the temporal lobe. Patients were treated with a

standard dose of radiation therapy, 66 –70 Gy in 33–35 fractions

for radical treatment of nasopharyngeal carcinoma. The medial

temporal lobe received nearly 100% of the prescribed dose to the

nasopharynx. MR images were obtained for patients who devel-

oped CNS symptoms or as a part of the regular work-up for sus-

pected local recurrence of nasopharyngeal carcinoma.

Studies from site 1 have previously been used in the initial

development of the COLLAGE descriptor.5 Similarly, studies

from site 2 have been used as an independent validation set by

Prasanna et al.6

All MR images were acquired in axial sections with a 1.5T or

3T scanner. We acquired T1-weighted postcontrast images with

the following parameters: For sites 1 and 2, the mean TR and TE

were 250 and 2.48 ms, respectively. For site 3, the corresponding

values were 620 and 20 ms, respectively.

Confirmation of Disease Presence
For sites 1 and 2, the patient cohort was selected by performing a

retrospective review of neuropathology in all patients with brain

tumors who underwent a surgical intervention for a recurrent or

progressive Gd-C T1WI– enhancing lesion identified during fol-

low-up at 9 months (or later) after the initial radiation therapy.

Follow-up MR images within 0 –21 days before the second resec-

tion or multiple biopsies (for disease confirmation) were used for

analysis. Histology was rereviewed by a neuropathologist (M.C. at

site 1 and K.H. at site 2) blinded to the original diagnosis and type

of RT, to quantify the percentage of CRN and RT. Histopatho-

logic diagnosis was based on World Health Organization criteria,

which included factors like the degree of pleomorphism, mitoses,

and vascular proliferation among others.11,12

For site 3, disease confirmation was

obtained by histologic diagnosis by an

expert who analyzed the presence of

pathologic features of CRN such as fi-

brinoid and coagulative necrosis. For

limited cases in which confirmation

was not feasible using histologic anal-

ysis, radiographic monitoring on fol-

low-up MR images was used for dis-

ease confirmation.

Preprocessing
To account for variability in pixel reso-
lutions across the studies, we resampled

every MR imaging slice to a uniform

pixel spacing of 1 � 1 mm2. Similarly,

every MR imaging volume was interpo-

lated to a 3-mm slice thickness. We then

corrected every study for intensity

nonstandardness, which refers to the inherent drift in MR imag-

ing signal intensities during acquisition, an artifact causing im-

age-intensity values within tissue-specific compartments to vary

across sites, scanners, and even within multiple repeat scans of a

single patient. Correction for intensity nonstandardness was im-

plemented using the approach as described in Madabhushi and

Udupa13 and implemented in Matlab R2016a (MathWorks,

Natick, Massachusetts). Specifically, we used a piecewise contin-

uous histogram-matching method (bins � 255, points � 64) for

normalizing the multi-institutional MR imaging studies. Ad-

ditional preprocessing involving skull stripping was per-

formed14 via the skull-stripping module in 3D Slicer (http://

www.slicer.org).15 Then, lesions were annotated on Gd-C T1WI

by 2 radiology experts (L.W., A.S.) on the slice that presented the

maximum lesion conspicuity. The 2 radiologists (L.W., A.S.)

worked in conjunction to establish a consensus to define an ROI

that was used for further analysis.

Feature Extraction and Statistical Analysis
Within the ROI identified by consensus across the expert radiol-

ogy readers on Gd-C T1WI, COLLAGE measurements were ex-

tracted on a per-pixel basis for all the pixels within the ROI.

Briefly, COLLAGE involves extracting the dominant gradient ori-

entation along the X and Y directions for every pixel via principal

component analysis.16 A co-occurrence matrix is then computed

for every pixel within the neighborhood to capture co-occurring

arrangements of the dominant gradient orientations. Thirteen

different second-order measurements (such as energy, entropy,

and variance) are then computed from this co-occurrence matrix

of the dominant gradient orientations. We chose to focus on en-

tropy because it captures the disorder of pixel gradient orienta-

tions on a per-pixel basis. In Prasanna et al,6 we showed that the

entropy values for the localized orientations were high for tumor,

while the values were low for benign pathologies (ie, CRN). A

detailed description of the algorithm and methodology for com-

puting 3D COLLAGE can be found in Prasanna et al.6 For our

analysis, every image voxel within the enhancing lesion was as-

signed a COLLAGE entropy value. We subsequently extracted 4

Patient cohorts with corresponding diagnosis as identified by an expert neuropathologist
on postsurgical specimens

Site No.,
Initial Diagnosis Category

Percentage CRN/Tumor
as Identified by Expert

No. of
Cases

Site 1
Primary tumors Predominant tumor �20% CRN, �80% tumor 12

Predominant CRN �80% CRN, �20% tumor 10
Metastatic tumors Predominant tumor �20% CRN, �80% tumor 12

Predominant CRN �80% CRN, �20% tumor 8
Site 2

Primary tumors Predominant tumor �20% CRN, �80% tumor 4
Predominant CRN �80% CRN, �20% tumor 1
Mixed 30% CRN, �70% tumor 2

Metastatic tumors Predominant tumor �20% CRN, �80% tumor 1
Predominant CRN �80% CRN, �20% tumor 1
Mixed 50% CRN, 50% tumor 1 (50%)

Site 3
NPC Pure 100% CRN 13

TCIA
Glioblastoma Pure 100% Tumor 10

Note:—NPC indicates nasopharyngeal carcinoma.

414 Prasanna Mar 2019 www.ajnr.org



different first-order statistics of the features (mean, SD, skewness,

and kurtosis) across all the voxels within the most conspicuous

lesion per study. For each of the 4 statistics, the range of values was

rescaled between 0 and 1. Each study was hence represented by a

4 � 1 feature vector, comprising the 4 statistics of COLLAGE

entropy within that ROI.

Comparison of COLLAGE Radiomic Features across
Different Grades of Radiation Necrosis and Recurrent
Tumor in Primary and Metastatic Tumors
Statistics of COLLAGE values (mean, SD, skewness, and kurtosis)

were compared for the pure CRN pathology against mixed and

predominant CRN/recurrent tumor pathologies, using the Wil-

coxon rank sum test, independently across primary and meta-

static tumors. We included COLLAGE statistics from the TCIA

glioblastoma studies to represent the pure tumor class, while

comparing pathologies within the primary tumor cohort. The

statistics obtained from COLLAGE were also compared with

those obtained from average Gd-C T1WI intensity values across

different CRN and recurrent tumor pathologies.

Classification Analysis to Distinguish CRN from RT
Using Pure and Predominant CRN and Tumor
COLLAGE Features
A random forest classifier was trained separately on primary and

metastatic cases, in a leave-one-out cross-validation setting. First,

COLLAGE features from only predominant CRN/tumor (from

site 1) were used within the training cohort. Next, we incorpo-

rated the pure CRN signatures (from site 3) into the training set

and repeated the classifier analysis separately for primary and

metastatic tumors. It was ensured that all the folds within leave-

one-out cross-validation contained pure CRN studies within the

training set. Receiver operating characteristic curves were ob-

tained for the training set analysis along with the corresponding

areas under the curve.

We used the classifier trained with both pure and predominant

COLLAGE features and evaluated its performance on the pre-

dominant cases on the held-out cases from site 2 (n � 10). Three

studies from site 2 that had mixed degrees of CRN and tumor were

excluded from the test set because the samples in the training

cohort were not exposed to mixed degrees of CRN. However, the

statistics obtained from the COLLAGE values for these studies

were compared with those obtained from the training cohort and

were reported.

RESULTS
Comparison of COLLAGE Radiomic Features across
Different Grades of Radiation Necrosis and Recurrent
Tumor in Primary and Metastatic Tumors
The original Gd-C T1WI intensity values were not found to be

statistically different across predominant CRN, predominant tu-

mor, pure CRN, and pure tumor groups for the primary cohort

(Fig 1A). While mean, SD, and kurtosis statistics of COLLAGE

did not demonstrate significant differences, the corresponding

COLLAGE skewness values were found to be statistically sig-

nificantly different (P � .05) across the 3 categories (excluding

pure tumor in which the results were not statistically signifi-

cantly different from predominant CRN) as shown in Fig 1C,

with higher skewness values suggesting a skewed distribution

toward elevated COLLAGE entropy. Most interesting, for pri-

mary tumors, COLLAGE skewness values were lowest for pure

CRN with a mean of 0.15 � 0.12 and 0.25 � 0.09 for predominant

CRN, 0.42 � 0.21 for predominant recurrence, and 0.27 � 0.07

for pure tumor, respectively. The values were statistically signifi-

cantly different between predominant CRN and predominant tu-

mor recurrence with P � .005, between pure CRN and predomi-

nant tumor recurrence with P � .001, and between pure CRN and

predominant CRN with P � .05.

Qualitative results of COLLAGE feature maps of pure CRN,

predominant CRN, and predominant tumor reflecting corre-

sponding changes in radiomic values are shown in Fig 2.

COLLAGE values for both mixed pathology studies were found to

lie between predominant CRN and tumor categories. The study

with 75% CRN (the green star in Fig 1C) had a low skewness value

of 0.013 compared with the one with 30% CRN (the green circle in

Fig 1C) with a skewness value of 0.285.

Similarly, for the metastatic cases, the intensity values (Fig 1B)

and mean, SD, and kurtosis of COLLAGE features were found not

to be statistically significantly different across the 3 groups. How-

ever, COLLAGE skewness values (ranging between 0 and 1) were

significantly different, with the lowest values for pure CRN with a

FIG 1. Box-and-whisker plots showing the distributions of T1WI signal
intensities and skewness of COLLAGE entropy values for pure and
different grades of CRN for primary and metastatic cases, respec-
tively. A and B, The signal intensities in primary and metastatic cases,
respectively. C and D, The COLLAGE skewness values for the same
cases. C, The green star and circle represent the cases from site 2 with
75% CRN and 30% CRN, respectively. D, The green star represents the
case from site 2 with 50% CRN. P values for the pairs of groups exhib-
iting statistically significant difference are also shown.
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mean of �0.41 � 0.22 and 0.61 � 0.33 for predominant CRN,

and 0.72 � 0.14 for predominant recurrence, respectively.

COLLAGE values were statistically significantly different only be-

tween pure CRN and predominant recurrence with P � .003, and

not across predominant and pure CRN. The study in site 3 with

50% CRN (green star in Fig 1D) had a skewness value of 0.4.

Classification Analysis to Distinguish CRN from RT
Using Pure and Predominant CRN and Tumor
COLLAGE Features
For primary brain tumor cases, the area under the curve for the

classifier, using COLLAGE features from both pure CRN and pre-

dominant studies in the training cohort, was found to be 0.67,

while for metastatic tumors, the area under the curve was 0.66.

The corresponding accuracies at the optimal operating point were

found to be 68.2% and 65%, respectively. However, the area un-

der the curve using only the COLLAGE features from predomi-

nant studies was found to be 0.64 for primary and 0.56 for meta-

static tumors. The corresponding accuracies at the optimal

operating point were found to be 59.1% and 65%, respectively.

On the independent test set at site 2, a total of 4 of 5 primary

tumor cases with predominant CRN/tumor were correctly classi-

fied. For the metastatic tumor cases, 1 of the 2 cases was correctly

classified.

DISCUSSION
COLLAGE, a recently developed radiomic feature, has previously

been shown to be effective in distinguishing predominant recur-

rent brain tumors from cerebral radiation necrosis on MR imag-

ing6 and also in predicting a pathologic complete response to

neoadjuvant chemotherapy in breast cancer.17 In this work, we

attempted to interrogate differences in COLLAGE values on post-

treatment Gd-C T1WI across different posttreatment pathologies

in brain tumors by associating the extent of CRN and tumor with

the corresponding expression levels of COLLAGE. We present

our findings of associations of COLLAGE features across patho-

logically proved pure, predominant, and mixed categories of CRN

and tumor.

While in the metastatic cohort, statistically significant differ-

ences were observed only between pure CRN and predominant

recurrence, COLLAGE values in the primary cohort were statisti-

cally significantly different between predominant CRN and pre-

dominant recurrence, pure CRN and predominant recurrence,

and pure CRN and predominant CRN. Over and above the results

reported in Chao et al,2 the findings in this work suggest that

COLLAGE may potentially characterize the spectrum of pathol-

ogies of CRN and RT on posttreatment Gd-C T1WI, as confirmed

on the corresponding histopathology.

Furthermore, our results show that COLLAGE entropy values

were skewed toward higher values for the predominant tumor

cases compared with the pure CRN or predominant CRN for both

primary and metastatic tumors (Fig 1). The difference in skewness

may be attributed to the low COLLAGE values in lesions having

lower concentrations of CRN, likely characterizing relatively inactive

necrotic tissue. Given that tumors have increased heterogeneity,18 it

is intuitive that COLLAGE features tend to be overexpressed, result-

ing in higher skewness, while radiation necrosis, which tends to have

a more coherent microarchitecture, results in a muted COLLAGE

response and consequently lower skewness values.

The reason for lower COLLAGE skewness in predominant RT

than in pure RT is likely the presence of more heterogeneous

tissue pathologies in the predominant RT group. Predominant

RT often exhibits tissue heterogeneity owing to the varying pres-

FIG 2. Gd-C T1WI for CRN from nasopharyngeal carcinoma (A), predominant (�80%) CRN (B), predominant recurrent tumor (�20% CRN) (C),
and glioblastoma (0% CRN) (D), and the corresponding COLLAGE entropy maps of the ROIs (E–H).

416 Prasanna Mar 2019 www.ajnr.org



ence of radiation-induced vascular hyalinization, telangiectasia,

and zonal necrosis. This tissue heterogeneity is possibly mani-

fested on the imaging scale and may therefore be captured by the

skewness of COLLAGE entropy. A similar trend was observed in

the variance of the skewness values in the boxplots, with low vari-

ance in COLLAGE observed in pure tumor compared with pre-

dominant RT.

Our results further demonstrate that incorporating

COLLAGE features from pure CRN in the training set resulted in

improved classification performance of the predominant CRN/

RT, compared with using COLLAGE features from the predomi-

nant CRN/RT alone. These findings are consistent from a ma-

chine learning perspective, wherein an ideal classifier is expected

to be exposed to the entire spectrum of cases—that is, a learning

set comprising features corresponding to “pure CRN and no can-

cer” and mixed classes comprising co-existing CRN and cancer.

There were a few limitations of this feasibility study. Our co-

hort was retrospectively acquired as a part of a study that was

concluded in 2016. Because we limited the analysis to pathologi-

cally proved grades of CRN/RT, the sample size was relatively

small. While our retrospective cohort contained pathologically

proved CRN and RT cases, it lacked cases that were histologically

confirmed to be pure metastatic brain tumor. Hence, we could

not perform a similar analysis on the metastatic cases, as was per-

formed on the cases with primary brain tumors. Furthermore,

differences in radiation therapy protocols in CNS tumors (both

primary and metastatic) and nasopharyngeal carcinoma were not

considered in the analysis. The analysis was limited to only Gd-C

T1WI in this study and did not consider other routine or ad-

vanced imaging protocols. No independent large-scale validation

of the findings was performed as a part of this study.

CONCLUSIONS
In this feasibility analysis, we presented the initial results of using

a new radiomic feature, COLLAGE, to capture the extent of cere-

bral radiation necrosis and recurrent tumor on posttreatment

Gd-C T1WI. We identified associations of COLLAGE features

with the extent of CRN and RT on Gd-C T1WI on a unique cohort

of patients histologically confirmed and treated for nasopharyn-

geal carcinoma, and primary and metastatic brain tumors. These

preliminary findings suggest that COLLAGE may be potentially

capturing subtle differences across different pathologic categories

of RT and CRN (pure, predominant, and, to some extent, mixed)

on posttreatment Gd-C T1WI. Learning such signatures, follow-

ing extensive multisite validation, may, in the future, help in im-

proved discrimination of CRN and RT, which still remains an

extremely challenging clinical problem in neuro-oncology. In fu-

ture work, we intend to prospectively validate our preliminary

findings on a larger, multi-institutional cohort.
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