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REVIEW ARTICLE

A Review of Magnetic Particle Imaging and Perspectives
on Neuroimaging

X L.C. Wu, X Y. Zhang, X G. Steinberg, X H. Qu, X S. Huang, X M. Cheng, X T. Bliss, X F. Du, X J. Rao, X G. Song, X L. Pisani,
X T. Doyle, X S. Conolly, X K. Krishnan, X G. Grant, and X M. Wintermark

ABSTRACT
SUMMARY: Magnetic particle imaging is an emerging tomographic technique with the potential for simultaneous high-resolution, high-
sensitivity, and real-time imaging. Magnetic particle imaging is based on the unique behavior of superparamagnetic iron oxide nanopar-
ticles modeled by the Langevin theory, with the ability to track and quantify nanoparticle concentrations without tissue background noise.
It is a promising new imaging technique for multiple applications, including vascular and perfusion imaging, oncology imaging, cell tracking,
inflammation imaging, and trauma imaging. In particular, many neuroimaging applications may be enabled and enhanced with magnetic
particle imaging. In this review, we will provide an overview of magnetic particle imaging principles and implementation, current applica-
tions, promising neuroimaging applications, and practical considerations.

ABBREVIATIONS: FFL � field-free line; FFP � field-free point; FFR � field-free region; MPI � magnetic particle imaging; SPIO � superparamagnetic iron oxide;
SPION � superparamagnetic iron oxide nanoparticle

Magnetic particle imaging (MPI) is a new tomographic tech-

nique developed in the early 2000s.1 In contrast to tradi-

tional imaging modalities such as MR imaging, sonography, x-

ray, and CT, MPI is not a structural imaging technique. Instead, it

is a tracer imaging technique similar to PET and SPECT. MPI

allows tracking and quantification of tracer materials, specifically

magnetic nanoparticles. It is a quantitative 3D imaging technique

with high spatial and high temporal resolution, which may allow

real-time high-resolution in vivo imaging. Prototype scanners

and, more recently, commercial animal scanners have yielded the

first in vivo MPI studies demonstrating applications in vascular

imaging,2-4 oncology,5-7 and cell-tracking.8,9 Human scanners

are being developed and will become available in a few years. As an

emerging imaging technique, MPI may open up new possibilities

in 3D in vivo real-time imaging.

In this review, we will introduce the principles and applica-

tions of MPI for researchers and clinicians in the neuroimaging

field. We will start with a basic description of the physics and

construction of MPI, then talk more in depth about the current

applications and discuss promising neuroimaging applications.

We will also include practical considerations and comparisons

with other imaging modalities for reference.

Magnetic Particle Imaging Principles

MPI Physics. MPI uses a magnetic gradient field, known as a

selection field, to saturate all superparamagnetic iron oxide

(SPIO) magnetization outside a central field-free region, known

as a field-free point (FFP) or field-free line (FFL). The FFL is

rapidly shifted over an imaging volume via a rapidly varying ex-

citation/drive field to produce an image. Large fields of view are

traversed using slower shift fields and mechanical translation. To

produce a signal, as the FFL traverses a SPION’s location, the

SPION’s magnetization changes nonlinearly in response. This

time-varying magnetization induces a voltage in the receiver coil,

which can be assigned to the instantaneous FFL location to pro-

duce a magnetic particle image. The voltages induced are linearly

proportional to the number of SPIONs at the instantaneous FFL

location, enabling quantification of SPIONs. Most importantly,

biologic tissue does not generate or attenuate the low-frequency

magnetic fields used in MPI, giving the technique ideal contrast
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independent of the source depth. These fields are further de-

scribed in the On-line Appendix.

Scanner Construction
The magnetic fields required for MPI are very different from those

used in MR imaging, so MPI scans cannot be acquired on a stan-

dard MR imaging scanner. A magnetic particle imager has 3 major

components: The main magnet subsystem generates the main

magnetic field gradient and shifts the field-free region (FFR) to

cover the full FOV, the transmit/receive subsystem generates the

drive field and receives the signal produced by the nanoparticles,

and the control console coordinates operation of the major sub-

systems and processes the received signal to produce an image.10

Typically, the main magnet produces both the selection field and

the slow-shift fields, driving the native resolution of the system.

The drive coils in the transmit/receive subsystem generate the

excitation signals in the nanoparticles, and this subsystem is de-

signed for decoupling much lower nanoparticle signals from the

excitation/drive signal. These MPI scanner components are fur-

ther described in the On-line Appendix.

Resolution, Contrast, and Sensitivity
The Table provides a comparison of MPI with common clinical

imaging modalities. The resolution of the technique is driven by

the interaction of the nanoparticle and the gradient.11-13 This

drives the native resolution of the system, which can be expressed

as full width at half maximum.13 For stronger gradient strengths

such as 6.1 T/m used in a MOMENTUM system (Magnetic In-

sight, Alameda, California), tailored nanoparticles have been

demonstrated to have �700-�m full width at half maximum res-

olution, and point sources remain distinguishable at a 600-�m

separation.14 While the native resolution of a system derives only

from interaction of the gradient and nanoparticle, there are nu-

merous techniques for improving the visual quality of the images

by trading the SNR of the technique for image resolution.15 These

techniques are frequently used in MPI to good effect and can

appreciably improve resolution for lower systems with lower gra-

dient strengths.15 The resolution compares well with clinical nu-

clear medicine. For example, clinical PET cameras have a funda-

mental resolution limit of �2 mm, with a practical resolution

limit of �2.5 mm,16, and typically SPECT has a resolution of �10

mm,17 though some systems have a resolution as fine as 3 mm

(eg, G-SPECT; MILabs, Utrecht, the Netherlands).

The contrast and signal to noise ratio is excellent with MPI

because MPI sees only a tracer and does not see tissue. More

specifically, MPI is not affected by the endogenous iron present in

the body: It can see only injected SPIONs. This is similar to PET

and SPECT, which also have no background signal from tissue.

However, PET and SPECT, with imaging times on the order of

minutes, are not suited for dynamic imaging applications. PET

and SPECT tracers also have half-lives on the order of minutes to

hours, while MPI tracers can last for days to weeks.18 MPI contrast

shows the greatest benefits in techniques in which the high con-

trast can lead to higher accuracy, such as perfusion imaging and

cell tracking. This benefit compares favorably with traditional

structural imaging techniques such as MR imaging and CT, which

can struggle to produce reliable perfusion imaging.19

The sensitivity of the technique is because MPI directly detects

the electronic magnetization of iron oxide nanoparticles, a mag-

netization that is large compared with the nuclear magnetization

detected in MR imaging.20 This feature gives MPI a low detection

limit, meaning that minute amounts of tracer material can be

detected. For example, the iron detection limit was 1.1 ng (SNR �

3.9) in a voxel of tailored MPI tracers using a high-sensitivity FFL

scanner with a 5.7-T/m gradient with a native resolution of

800-�m full width at half maximum.14 The system was also used

to detect dilute tracer (550 pg Fe/�L), which could be seen with

SNR � 4.9.14 As MPI systems begin to mature, their sensitivity

should continue to improve. Current systems have limits as low as

�200 cells in a voxel,9,18 and theoretically, the MPI detection

limit may be as little as 1–10 iron oxide cells in a voxel.18

Applications of MPI and Perspectives on Neuroimaging

Vascular Imaging. Currently the standard of care for cerebral

blood perfusion imaging is CT perfusion, which poses ionizing

radiation risks. MPI is well-suited for measuring perfusion. A

study demonstrated imaging of cerebral blood flow in living mice

using MPI.2 This was followed by a demonstration of MPI per-

fusion in mice for imaging stroke.3 In our work, we recently

measured CBV and CBF in a rat.4 In addition, we performed in

vivo cerebral blood perfusion in stroke mice with MPI (Fig 1),

in which an intravenous bolus of iron nanoparticles was ad-

ministered to mice. Tomographic 3D-MPI was performed us-

ing a MOMENTUM MPI system (Magnetic Insight). We

Comparison of MPI with common clinical imaging modalities21–25

Modality Ultrasound CT MRI PET SPECT MPI
Main clinical applications Structural imaging Structural

imaging
Structural imaging Tracer imaging Tracer imaging Tracer imaging

Spatial resolution 1 mm �1 mm 1 mm 4 mm 3–10 mm 1 mm
Temporal resolution �1 second Seconds Seconds to hours Minutes Minutes �1 second to minutes
Contrast agents/tracers Microbubbles Iodine Gadolinium, iron

oxide particles
Radioactive

tracers
Radioactive

tracers
Iron oxide particles

Sensitivity Low Low Low High High High
Patient risk Heating and

cavitation
Radiation Heating and

peripheral
nerve stimulation

Radiation Radiation Heating and peripheral
nerve stimulation

Cost Low Medium High High Medium Medium
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showed that lower MPI signal (a measure of CBV) is observed

on the side of the brain with the stroke lesion.

Another promising application of MPI is to image vasculature.

MPI provides 3D information, and the signal is directly related to

blood volume in a vessel. This is an improvement over 2D tech-

niques such as x-ray or DSA. CT or MR angiography, while pro-

viding 3D images, has background noise from the surrounding

tissue and calcium, which is not a concern for MPI. In MPI, 3D

angiography can be performed using bolus tracking or blood pool

agents. An MPI-specific long circulating nanoparticle can repeat-

edly measure the blood pool with 1 single injection, enabling

tracking of changes from minutes to hours.26 For example, we

recently demonstrated use of a long circulating tracer to detect gut

bleed,27 in which a transgenic mouse model with bleeding in-

duced in the gut using heparin was imaged with 21 repeat MPI

scans for 80 minutes. In another study in a rat model of traumatic

brain injury, animals were monitored longitudinally to study ce-

rebral bleeding caused by the impact. We showed differences in

the nanoparticle clearance rate in different regions of the brain in

the impacted animals compared with the controls over a 2-week

period.28

MPI is also capable of very fast imaging, similar to x-ray and

DSA, enabling tracking of fast blood flow dynamics. Previously, 1

study demonstrated 3D in vivo imaging of a beating mouse heart

using a clinically approved concentration (�40 �mol [Fe] l�1) of

Resovist (ferucarbotran; Bayer Schering Pharma, Berlin, Ger-

many), with a temporal resolution of 21.5 ms, FOV of 1–2 cm, and

resolution sufficient to resolve heart chambers.29 In addition, it

has been shown that catheters and guidewires can be tracked with

MPI, enabling image-guided interventions.30,31

Oncology. A promising application for MPI is in oncology. MPI

could be used to image tumor vascularization, which may be im-

portant in indicating tumor stage and

treatment efficacy. We recently demon-

strated MPI visualization in a breast can-

cer xenograft model and showed that

MPI can see both the early dynamic con-

trast-enhanced effect of nanoparticles

flowing into a tumor, followed by the

enhanced permeability and retention ef-

fect during the following 48 hours.32

In neuro-oncology, conventional MR

imaging and CT lack reliability in assess-

ing the size and location of brain tu-

mors, and they are often not specific

enough to differentiate tumor prog-

ression from other treatment-related

changes.33,34 While traditional PET for

glucose metabolism is often used in pe-

ripheral tumor imaging, it cannot pro-

vide good contrast for brain tumors due

to the high levels of glucose metabolism

inherent in the brain, and novel tracers

such as radio-labeled amino acids are re-

quired for better contrast.35 MPI may

provide a promising alternative, espe-

cially as brain-specific MPI tracers are

developed to improve specificity, enhance retention times, and

reduce potential harm to the patient.

In brain tumor studies, SPION size can be optimized to pas-

sively target and accumulate in a brain tumor because the tumor is

hypervascularized with leaky vessels while the blood-brain barrier

blocks access to healthy brain tissue.36-38 Active tumor targeting

can also be achieved via surface chemistry modifications or the

use of magnetic fields. For example, it was shown that lactoferrin-

conjugated nanoparticles can be used to target brain glioma cells

in MPI.5 By means of a human glioblastoma mouse model, fluo-

rescent magnetic nanoparticles could be magnetically retained in

the neovasculature as well as tissue of the tumor, using a magnetic

micromesh.6

MPI can also be used for sentinel lymph node imaging and

hyperthermia treatment. The current state of the art is to use

radioactive colloid tracers, which could be replaced with MPI

tracers. This was demonstrated in a mouse cancer model,7 in

which magnetic tracer material was seen depositing in tumor tis-

sue and/or sentinel lymph nodes near tumors. In hyperthermia

treatment, magnetic particles injected into tumors can locally

heat the tissue around the FFR. It was demonstrated that the MPI-

measured magnetic particle concentration correlated well with

tumor volume decrease after magnetic hyperthermia.39 In an-

other study, it was shown that magnetic nanofibers loaded with

magnetic nanoparticles could be visualized using MPI and used

for magnetic hyperthermia.40

Cell Labeling and Tracking. MPI is promising for cell tracking

because the technique is independent of depth in tissue with mil-

limeter-scale resolution, robust linear quantification, and high

sensitivity. We evaluated MPI for tracking of systemically admin-

istered mesenchymal stem cells.8 Mesenchymal stem cells are of

FIG 1. Perfusion, structural, and histology images from a mouse injected with the nanoparticles.
The parameters were the following: FOV � 4 cm, 35 projections, best image quality, Lodespin
scan mode. A 70- to 100- L intravenous bolus of iron nanoparticles (0.949 mg Fe/mL; core diam-
eter, 27.6 nm) donated by Dr Kannan Krishnan, University of Washington, was administered to
C57Bl/6 stroke mice through tail veins. The mice were sacrificed within 30 minutes postinjection,
and 3D-MPI was performed using a MOMENTUM MPI system. Anatomic images were collected
on the eXplore CT-120 microCT (GE Healthcare, Milwaukee, Wisconsin) and a 7T MR imaging
scanner (BioSpec; Bruker Instruments, Billerica, Massachusetts). Data analysis and image registra-
tion were performed using the Horos (https://sourceforge.net/projects/horos/) and VivoQuant
software (Invicro, Boston, Massachusetts). In vivo iron oxide quantification was performed by
imaging fiducials containing a known concentration of tracer positioned beside the animal. A, In
the 2D coregistered image from CT and MPI, the MPI signal (red if high, yellow if intermediate,
blue if low) from the left hemisphere is less than that from the contralateral side (red spots
indicate vascular structures with high blood volume). B, The high T2 signal (stroke lesion, arrow-
heads) in the left basal ganglia and thalamus. C, The histology image of a perfusion-fixed whole
brain shows the stroke lesion on the left (L). R indicates right.
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particular therapeutic interest because they can control inflam-

mation and modify the proliferation and cytokine production of

immune cells.41 Intravenous injections are sometimes used to de-

liver mesenchymal stem cells in both animal models and clinical

trials.42,43 Our proof-of-concept study confirmed that �80% of

mesenchymal stem cells are entrapped in pulmonary vasculature

following intravenous injection.8 In a different study, it was

shown that rat and human adult stem cells can uptake SPIONS

and they localize in the cytoplasm.44 Blood cell tracking is another

application for MPI as a method for increasing circulation time.45

Using red blood cells as the carriers also has the advantage of being

able to increase circulation time from minutes to hours.2,46,47

Additionally, there is ongoing work on the development of MPI-

tailored nanoparticles, which can be functionalized for efficient

targeting and cell labeling. We recently demonstrated that Janus

nanoparticles made by encapsulating iron oxide nanoparticles in

semiconducting polymers allowed efficient cell labeling and were

sensitive enough to track 250 labeled HeLa cells after implanta-

tion in mice.9

These cell-labeling and tracking methods may also be applied

to neuroimaging. In one study, it was shown that neural grafts

could be monitored in rats. This study implanted neural progen-

itor cells into the forebrain of rats and measured nonsignificant

signal decay during 87 days.18 The authors demonstrated a detec-

tion sensitivity of �1000 cells in a voxel. As commercial develop-

ment continues, we estimate that the theoretic detection limit

may approach as little as 1–10 cells in a voxel. For comparison,

these numbers compare favorably with MR imaging, in which the

first clinical cell-tracking detection limit

was 15,000 cells.48 In a preliminary ex-

periment, we administered SPION-la-

beled mouse macrophages to stroke

mice to test the localization and reten-

tion of signals for stroke monitoring (Fig

2). We showed that while the accumula-

tion of iron-labeled cells was highest at

48 hours, there was still detectable MPI

signal at 96 hours postinjection.

Inflammation Tracking. Inflammation is

involved in many disease processes, in-

cluding immune disorders, neurologic/

neuropsychological disorders, and cancer.

Detection and tracking of inflammation

could help with diagnosis and monitor

treatment outcomes. Unfortunately, cur-

rent practices in tracking inflammation

often involve biopsies or imaging methods

that have low specificity and quantifiabil-

ity. MPI may be a promising quantitative

imaging alternative. Previous studies have

already shown the use of SPIO tracers to

target inflammation. SPIOs may be in-

jected intravenously and may be taken up

at inflammation sites, such as by macro-

phages at active phagocytic sites49,50 or by

atherosclerotic plaques.51,52 Previous

studies have used MR imaging to detect

the SPIONs for inflammation tracking.49,50,53,54 However, with high

magnetic susceptibility, SPIOs cause a decrease in signal intensity,

which could often be confused with signal voids from bone, air bub-

bles, susceptibility blowouts, and imaging artifacts. With the use of

MPI, SPIONs can be more specifically detected with a higher signal-

to-noise ratio.

Contrast Agent. SPIO contrast agents have previously been

developed for MR imaging contrast enhancement. SPIOs are

relatively safe for the patient and are biodegradable through

the reticuloendothelial system.55 As mentioned previously,

SPIO agents can achieve long retention times in the body up to

hours or days when loaded into cells. In PET or SPECT, the

radioactive tracers have shorter half-lives in the body, espe-

cially for the high-energy probes required in PET. In addition,

due to the short half-life of PET tracers, PET requires a cyclo-

tron on site. In comparison, the SPIOs used in MPI are much

more stable and have longer shelf lives with lower production

cost.56 There are a number of commercial SPIO agents that

have either received FDA approval or are in a clinical trial

phase57 to serve as potential contrast agents for MPI.58-61

SPIONs have historically been used in humans as MR imaging

contrast agents, and 2 tracers, ferucarbotran (Resovist)and

ferumoxytol, remain on the market in the European Union/

Asia Pacific and the United States/European Union/Asia Pa-

cific, respectively. These agents have been approved for con-

trast-enhanced MR imaging of the liver/spleen.62,63 MR

imaging contrast agents can also be used for MPI. Additionally,

FIG 2. SPION-labeled macrophages have long retention times in the brain of a stroke mouse. We
administered 1–2 � 106 nanoparticle (VivoTrax; Magnetic Insight)-labeled mouse macrophages
(Raw 264.7; American Type Culture Collection, Manassas, Virginia) to BALB/c mice through tail
veins 24 hours after stroke. At 48, 72, and 96 hours poststroke, 2D-MPI was performed using a
MOMENTUM MPI system. The MPI protocol used the parameters of FOV � 4 cm, 55 projections,
best image quality, and default scan mode. Anatomic images were collected on the eXplore
CT-120 microCT. Data analysis and image registration were performed using the Horos and Vivo-
Quant software. In vivo iron oxide quantification was performed by imaging a fiducial containing
a known concentration of tracer positioned beside the animal. The MPI signal was detected in the
brain at 48, 72, and 96 hours poststroke; the accumulation of iron-labeled cells was the highest at
48 hours and reduced with time.
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development and synthesis of MPI-tailored contrast agents are

an emerging and important field of research.

MPI performance is affected by particle size, size distribution,

relaxation properties, surface chemistry, and the environ-

ment.61,64-66 MPI tracer development has so far been dominated

by optimizing for particle core size and size distribution. This is

especially important for MPI because particle size directly affects

image resolution. We have shown that single-core tracers with

core diameters of 26 –27 nm provide excellent performance for

MPI, and modeling studies predict 25–30 nm as the optimal di-

ameter for iron oxide magnetic nanoparticles, with improved per-

formance for uniform size and optimized magnetic proper-

ties.67,68 Early research also shows that there is an optimal core

size for each operating frequency that is driven by transition of the

dominant relaxation effect from Néel to Brownian.67,68 Addition-

ally, for in vivo applications, further considerations need to be

made for circulation time, biodistribution, and cellular uptake.

Thus, new contrast agents more specifically targeted for MPI ap-

plications are being actively developed. These new particles are

optimized for size and size distributions,68,69 quality of crystal

structure,9 mass sensitivity,67 high stability,70 rich harmonic spec-

trum,71 and surface chemistry.72-74

Safety Considerations. The current consensus is that MPI is safe to

scale to human sizes. The primary concerns for MPI are the safety of

the SPIONs and the safety of the time-varying magnetic fields.

SPIONs are considered a low risk to patients and are well-tolerated,

with some exceptions. First, large concentrations can lead to de-

creased cell proliferation.75 Second, there have been some cases of

moderate-to-severe allergic reactions to injections of SPIONs.76-78

There is comparatively less risk in the magnetic fields used by

MPI, which is governed by the same limits to peripheral nerve

stimulation and specific absorption rate that are seen in MR im-

aging. In a human subject study, it was found that the safe limit for

peripheral nerve stimulation and the specific absorption rate in

the chest is about 7 mT, between 25 and 50 kHz.79 Cardiac stim-

ulation and peripheral nerve stimulation will not be a limitation

for clinical MPI systems.79-81 In addition, for applications in

which guidewires and catheters are used, heating of the equip-

ment is also a potential concern.82

Practical Considerations. The hardware complexity of MPI is

comparable with that of MR imaging. One of the difficult engi-

neering tasks is while MR imaging requires a parts-per-million

accurate main magnetic field, MPI requires a parts-per-million

accurate sinusoidal drive field.83 Both techniques require real-

time control of magnetic fields and involve pulse sequences and

reconstruction algorithms. In contrast to MR imaging, however,

MPI scanning and imaging are straightforward, and we have not

found that specialized training is required to acquire or interpret

MPI. MPI contrast agents are widely available, easy to handle, and

less expensive than commonly used radioactive probes. Like nu-

clear medicine, it can be helpful to have structural information

with which to overlay MPI, and we frequently coregister MPI with

CT and MR imaging. Thus, construction of hybrid systems to ease

coregistration with anatomic images may be desirable in the

future.

CONCLUSIONS
MPI is a novel, promising imaging technique for sensitive, quan-

titative, and high-resolution in vivo imaging. Preliminary animal

studies have shown promising applications, including vascular

imaging, oncology imaging, cell tracking, and inflammation im-

aging. Much development work is being done to further improve

imager design, tracer design, and imaging protocols. With these

improvements and the upcoming development of human-sized

scanners, MPI has the potential to become a widely adopted clin-

ical tool for neuroimaging.
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