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ORIGINAL RESEARCH
ADULT BRAIN

DWI for Monitoring the Acute Response of Malignant
Gliomas to Photodynamic Therapy

Y. Fujita, T. Sasayama, K. Tanaka, K. Kyotani, H. Nagashima, M. Kohta, H. Kimura, A. Fujita, and E. Kohmura

ABSTRACT

BACKGROUND AND PURPOSE: Photodynamic therapy is a novel treatment that provides effective local control, but little is known
about photodynamic therapy–induced changes on MR imaging. The aim of this study was to assess the utility of DWI and ADC in
monitoring the response of malignant gliomas to photodynamic therapy.

MATERIALS AND METHODS: Time-dependent changes in DWI and ADC values after photodynamic therapy were analyzed in a
group that received photodynamic therapy in comparison with a group that did not.

RESULTS: Twenty-four patients were enrolled (photodynamic therapy, n = 14; non-photodynamic therapy, n = 10). In all patients who
received photodynamic therapy, linear high signals on DWI in the irradiated area were detected adjacent to the resection cavity
and were 5–7mm in depth from 1 day posttreatment and disappeared in about 30 days without any neurologic deterioration. The
non-photodynamic therapy group did not show this change. The photodynamic therapy group had significantly lower ADC values
from 1 day posttreatment (P, .001), which increased steadily and disappeared by 30 days. There was no decline or time-dependent
change in ADC values in the non-photodynamic therapy group.

CONCLUSIONS: The acute response of malignant gliomas to photodynamic therapy was detected as linear high signals on DWI
and as a decrease in ADC values. These findings were asymptomatic and transient. Although the photodynamic therapy–induced
acute response on MR imaging disappeared after approximately 30 days, it may be helpful for confirming the photodynamic ther-
apy–irradiated area.

ABBREVIATIONS: CE 4 contrast-enhanced; PDT 4 photodynamic therapy

Standard therapy for malignant glioma, the most aggressive
primary malignant brain tumor, includes maximal possible

surgical resection followed by radiation therapy and concomitant
temozolomide-based chemotherapy, which results in a median
survival of 14.6months.1 The major problem with malignant gli-
oma is its invasiveness. It is extremely difficult to remove all the
tumor cells that have invaded the peripheral normal brain tissue.

Consequently, local recurrence develops in many cases.2,3

Development of novel treatments that have both potency and high
selectivity for tumor cells in the peripheral zone where normal
brain cells and tumor cells coexist is desirable. Photodynamic ther-
apy (PDT) is a novel treatment that could overcome these issues.

PDT is a light-activated treatment technique that harnesses
tumor-selective accumulation of photosensitizer and a photo-
chemical reaction on semiconductor laser irradiation. The oxy-
gen in the tumor tissue is converted from the ground state to the
excited state, singlet oxygen, which is cytotoxic and exerts an
antitumor effect.4 The concept of PDT was first reported in
1900,5 developed as a treatment technique in the 1960s,6,7 and
entered into clinical trials for several types of cancer during the
1980s and 1990s.8-13 The potential use of PDT for brain tumors
was first reported in 1980,14 and its effectiveness with porfimer
sodium, a first-generation photosensitizer, for malignant brain
tumors was reported in the 2000s.15-17 In 2013, the safety and
effectiveness of PDT with talaporfin sodium, a second-generation
photosensitizer, for primary malignant brain tumors was estab-
lished in a Phase II clinical trial in Japan. PDT for malignant
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brain tumors was subsequently approved for coverage under
Japanese national health insurance.18

Postoperative follow-up is generally performed using MR
imaging. Although a contrast effect in the resected cavity wall
and fluid retention have been reported to be transient MR imag-
ing abnormalities after PDT,19 these changes can also occur after
conventional brain tumor surgery.20 It is unclear how purely
PDT-induced changes in the tumor microenvironment are
reflected on postoperative imaging. Therefore, it would be useful
to clarify the characteristic changes on MR imaging after PDT to
monitor the therapeutic response. Given the evidence for DWI
and ADC in ischemic stroke,21-23 we hypothesized that post-PDT
changes in brain tumors could be captured by DWI and ADC.
The aim of this study was to elucidate the changes on MR imag-
ing that are purely attributable to PDT for malignant glioma to
test this hypothesis.

MATERIALS AND METHODS
Study Design and Study Patients
The study was approved by the institutional review board (Kobe
University Hospital) (protocol number B190100) and conducted
according to institutional and national ethical guidelines and in
accordance with the Helsinki Declaration.

Since August 2017, our institution has used PDT in combina-
tion with conventional surgery without a biodegradable carmustine
wafer in patients with World Health Organization grade III or IV
glioma confirmed by rapid intraoperative pathologic diagnosis
who underwent.90% (gross-total or subtotal) resection or inten-
tional partial resection because of involvement of eloquent areas.
Between January 2015 and March 2019, eighty-four of 114 patients
with glioma treated at our institution were confirmed histopatho-
logically to have World Health Organization grade III or IV

glioma. Twenty-six of these 84 patients were treated during our
post-PDT era, from August 2017 to March 2019. Fourteen of these
patients underwent PDT and were enrolled in this study as the
PDT group; the remaining 12 patients were excluded because they
had undergone biopsy without PDT (n = 6) or resection without
PDT because of an intraoperative pathologic diagnosis suggesting
low-grade glioma (n = 6). We analyzed the post-PDT time-de-
pendent changes on DWI, in ADC values, and on contrast-
enhanced T1WI (CE-T1WI) and T2-weighted FLAIR images
obtained on days 1, 7, 14, 30, and 60 after the operation.
Furthermore, to confirm whether the findings were specific for
PDT, we compared the PDT group with a non-PDT group selected
using the following criteria: newly diagnosed glioblastoma treated
without PDT and without a biodegradable carmustine wafer at our
institution during the pre-PDT era from January 2015 to July
2017, .90% resection or intentional partial resection because of
involvement of eloquent areas, and adequate MR imaging scans
obtained at least once during each of the following periods: 1–
3days, 14–30days, and 60days after the operation. Of the 58
patients with World Health Organization grade III or IV glioma
treated during the pre-PDT era, 10 met the inclusion criteria and
were selected as the non-PDT group and 48 were excluded because
of lack of postoperative MR imaging at 1–3days (n=26), biopsy
(n=11), surgery with a biodegradable carmustine wafer (n=7), or
not having a newly diagnosed glioblastoma (n=4). The flow
chart outlining the patient-selection process is shown in Fig 1. The
histopathologic diagnosis was performed according to the 2016
World Health Organization guidelines.24

Surgical Treatment with PDT
Patients who were scheduled for PDT received a single intrave-
nous injection of talaporfin sodium (Laserphyrin; Meiji Seika

FIG 1. Flow chart showing the patient selection process. LGG indicates low-grade glioma; BCNU, biodegradable carmustine.
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Pharma, Tokyo, Japan) at a dose of
40mg/m2 22–26 hours before the
operation. After maximum resection
of the enhanced lesion, the entire
resection cavity was irradiated with a
664-nm semiconductor laser (PD laser;
Meiji Seika Pharma, Tokyo, Japan) (di-
ameter, 1.5 cm; radiation power den-
sity, 150 mW/cm2; radiation energy
density, 27 J/cm2). Each irradiation
was performed for 3 minutes per spot
without overlap of the previously irra-
diated area and without limitation of
the number of irradiation spots. The
canopy walls were irradiated by reflect-
ing the beam using a mirror. The large
blood vessels were protected by alu-
minum foil so as not to be directly
irradiated. Post-therapeutic light pro-
tection (,500 lux) was performed for
10–14 days to prevent photosensitive
dermatosis.

Imaging Analysis
DWI was performed with a 3T MR
imaging scanner (Achieva; Philips
Healthcare, Best, the Netherlands)
using echo-planar imaging and the

Patient characteristics

Characteristic
PDT

(n4 14)
Non-PDT
(n4 10) P Value

Age (yr) .98
Median (range) 61.5 (35–70) 61.0 (36–72)

Sex (No.) (%) .92
Male 8 (57) 6 (60)
Female 6 (43) 4 (40)

Preoperative Karnofsky Performance
Status Scale score

.17

Median (range) 80 (30–100) 70 (30–100)
Tumor locations (No.) (%) .67

Frontal 9 (64) 5 (50)
Temporal 3 (21) 4 (40)
Parietal 1 (7) 1 (10)
Basal ganglia 1 (7) 0 (0)

Preoperative tumor volume (cm3) .07
Median (range) 31.7 (2.2–140.0) 70.3 (16.4–153.5)

Extent of resection (No.) (%) .91
Gross-total 10 (71) 7 (70)
Subtotal 2 (14) 1 (10)
Partial 2 (14) 2 (20)

Histopathology (No.) (%) .14
Glioblastoma 11 (79) 10 (10)
Anaplastic astrocytoma 1 (7) 0 (0)
Anaplastic oligodendroglioma 2 (14) 0 (0)

Isocitrate dehydrogenase mutation
status (No.) (%)

.50

Wild-type 11 (79) 9 (90)
Mutant 3 (21) 1 (10)

MIB-1 index .65
Median (range) 20 (10–80) 20 (8–40)

FIG 2. A representative case in the PDT group. Preoperative DWI (A), ADC map (G), CE-T1WI (M), and FLAIR (S) demonstrate the lesion with a
cyst in the right frontal lobe. Postoperative DWI (B–F), ADC map (H–L), CE-T1WI (N–R), and FLAIR (T–X) show time-dependent changes after
PDT.
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following parameters: b-values, 0 and 1000 s/mm2; TR/TE, 4500/
75ms; FOV, 240mm; section thickness, 4mm; section gap,
1mm; matrix, 109� 128; and flip angle, 90°. The ADC values
from DWI of 2 types (b-values, 0 and 1000 s/mm2) were calcu-
lated per voxel to create the ADC map. An ROI measuring 10–20
mm2 was drawn manually on a representative DWI section of the
largest resection cavity and was set on the PDT-irradiated area in
the PDT group and on the surgical resection margin in the non-
PDT group. The ROI was then reflected to the ADC map. To
assess time-dependent changes, we set ROIs numbered 1–5,
respectively, with a wide and balanced distribution and fol-
lowed them at the same anatomic locations. The mean of the
ADC values within the ROIs was used for statistical analysis.
The ROIs were drawn by a single neurosurgeon (Y.F.) and
confirmed by another neurosurgeon (T.S.).

The conventional MR imaging sequences included FLAIR (TR/
TE/TI, 4500/148/1600ms; FOV, 240mm; matrix, 240� 240; sec-
tion thickness, 1.0mm) and 3D T1WI (TR/TE/TI, 6.4/2.8/1200ms;
FOV, 260mm; matrix, 320� 320; section thickness, 0.8mm)
before and after injection of the intravenous gadolinium con-
trast agent (0.2mL/kg, Magnescope; Meglumine gadoterate,
Guerbet, Paris, France).

Statistical Analysis
The characteristics of each group were compared using the Fisher
exact test and the Mann–Whitney U test. The Friedman test was

used to assess the postoperative time-
dependent change in ADC values. The
Bonferroni test was used for post hoc
comparisons. The Mann-Whitney U
test was used to compare ADC values
between the groups. All statistical analy-
ses were performed with EZR (Saitama
Medical Center, Jichi Medical Univer-
sity, Saitama, Japan), which is a graphic
user interface for R statistical and com-
puting software (http://www.r-project.
org/).25 A 2-sided P value of ,.05 was
considered statistically significant.

RESULTS
Patient Characteristics
In total, 24 patients were included in
the study. There were 14 patients (8
men, 6 women; median age, 61.5
years [range, 35–70 years]) in the
PDT group and 10 patients (6 men,
4 women; median age, 61.0 years
[range, 36–72 years]) in the non-PDT
group (Fig 1). The characteristics of
the patients in both groups are sum-
marized in the Table. There were no
statistically significant between-group
differences in age, sex, preoperative
Karnofsky Performance Status Scale
score, tumor location, preoperative
tumor volume, or extent of resection

at baseline. Intraoperative MR imaging was performed in 12
patients (86%) in the PDT group and 8 (80%) in the non-PDT
group. In the PDT group, all 12 patients who underwent intrao-
perative MR imaging had no evidence of surgery-related ischemia
or hemorrhage before PDT. Awake surgery was performed in 1
(7%) of the patients in the PDT group and 3 (30%) of those in the
non-PDT group because the tumors were close to the Broca area.
There was no statistically significant difference in histology, isoci-
trate dehydrogenase status, or the MIB-1 index between the 2
groups. The median number of irradiation spots was 13 (range,
5–31) in the PDT group. No patient in either group showed neu-
rologic deterioration postoperatively or a deterioration in
Karnofsky Performance Status Scale score at 60 days.

Post-PDT MR Imaging
In all patients in the PDT group, linear high signals on DWI in
the irradiated area were detected adjacent to the resection cavity
and were 5–7mm in depth from 1day posttreatment and disap-
peared in about 30 days without any neurologic deterioration
(Fig 2). The area on the ADC map corresponding to the high sig-
nals on DWI was hypointense. None of the patients in the non-
PDT group showed this change (Fig 3).

These changes in DWI were also tracked by the ADC value.
The PDT group had lower ADC values from 1 day after PDT.
The ADC values (expressed as 10�6 mm2/s) increased in a time-
dependent manner, continued to increase significantly up to

FIG 3. A representative case in the non-PDT group. Preoperative DWI (A), ADC map (E), CE-T1WI
(I), and FLAIR (M) demonstrate the lesion in the right temporal lobe. Postoperative DWI (B–D),
ADC map (F–H), CE-T1WI (J–L), and FLAIR (N–P) show time-dependent changes after the
operation.
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30days after PDT (589.86 86.7 on day 1; 745.16 109.9 on day 7,
939.16 100.3 on day 14, and 1083.26 116.2 on day 30; P, .001),
and reached a plateau (1097.66 112.2 on day 60; P=1.0, Fig 4). In
contrast, there was no decline and time-dependent change in
ADC values after the operation in the non-PDT group (1050.86
96.9 on day 1, 1041.2 6 91.0 on day 7, 998.8 6 210.3 on day 14,
1090.4 6 84.7 on day 30, and 1071.5 6 92.8 on day 60; P= .44,
Fig 4). The ADC values in the PDT group were significantly
lower than those in the non-PDT group until 14 days after the
operation; thereafter, the difference was no longer statistically sig-
nificant (day 1, P , .001; day 7, P , .001; day 14, P= .002; day
30, P= .33; and day 60, P= .36; Fig 4).

One patient in the PDT group had both PDT-irradiated and
nonirradiated areas because the middle cerebral artery ran
through the center of the resected cavity. In this case, the nonirra-
diated area showed neither high signal on DWI nor a decline in
the ADC value. ADC values in the nonirradiated area remained
in the range of 1000–1200 � 10�6mm2/s from day 1 to day 60 af-
ter the operation with PDT (Fig 5).

On CE-T1WI, all patients in both groups showed thin linear
contrast effects along the resected cavity wall at 1–2weeks after
the operation. Fluid retention was observed on FLAIR in 9
patients (64%) in the PDT group and 7 (70%) of those in the
non-PDT group. The difference between the 2 groups was not
statistically significant (P= .56).

DISCUSSION
Surgery combined with PDT is a
novel localized treatment for malig-
nant glioma that can selectively kill
tumor cells invading from the surgi-
cal resection margin to the periph-
eral normal brain. Previous studies
have demonstrated its safety and
effectiveness.18,19,26 PDT with tala-
porfin sodium, a second-generation
photosensitizer, has been safely used
in patients with malignant glioma at
our institution since August 2017. In
this study, we identified specific
changes on MR imaging scans that
can be used to monitor the early
response to PDT. The PDT-irradi-
ated site showed linear high signals
of 5–7mm on DWI from the acute
phase after PDT that were transient
and asymptomatic. Furthermore, the
high signals on DWI had concurrently
lower ADC values, which improved in
a time-dependent manner parallel to
the signal intensity on DWI.

DWI is an MR imaging sequence
that images the Brownian motion of
water molecules in tissue. The ADC is
less susceptible to T2 shinethrough,
which is a problem with DWI, and
accurately reflects the diffusivity of
water molecules. Cellular swelling and

narrowing of the extracellular space due to effects of cytotoxicity
such as ischemia, known as cytotoxic edema, restrict the move-
ment of water.21,23 In general, regions with cell damage show
high signals on DWI and low ADC values.

Three main mechanisms are known to underpin the effect of
PDT: 1) direct tumor cell killing including apoptosis and necro-
sis,26,27 2) tumor-associated vascular damage,28,29 and 3) activa-
tion of the immune response against tumor cells.30-32 These
mechanisms also influence each other.33,34 The antitumor effects
cannot be attributed to the photosensitizer alone or the laser
alone.35,36 The photosensitizer used in PDT is transformed from
its ground state into an electronically excited state by laser light
of a specific wavelength and transfers the energy directly to triplet
oxygen to form singlet oxygen (a type II reaction), which exerts
an antitumor effect.4 We could capture the PDT-induced early
response as high signals on DWI and low ADC values because
the cell damage and microcirculatory impairment caused by PDT
led to restricted diffusivity of water molecules. These changes in
DWI and ADC values were observed only in the PDT-irradiated
area and not in the nonirradiated area, even in the same patient.

Furthermore, the tissue transmittance of the laser depends on
the wavelength and irradiation power. The semiconductor laser
used in this study (664 nm, 150 mW/cm2) has been reported to
penetrate to an approximate tissue depth of 5mm.19 The match
of the width of the DWI high signal and the depth of penetration

FIG 4. Postoperative DWI (left) and ADC map (right) demonstrate representative settings for the
ROIs in the PDT group (A) and non-PDT group (B). The small circles labeled 1–5 indicate the ROIs
used for analysis of the ADC values. A line graph demonstrates the postoperative time-depend-
ent change in ADC values in the PDT group (thick line) and non-PDT group (thin line) (C). Double
asterisks indicate P, .01; triple asterisks, P, .001, Mann-Whitney U test.
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of the laser strongly suggests that the abnormal findings on
DWI and ADC were caused by the effect of PDT. Although the
level and postoperative course of the ADC values in the PDT
group were similar to those in ischemic stroke, the initial re-
covery of the ADC values was found to be more rapid after
PDT than after stroke.23 Moreover, all the changes in DWI
and ADC values in the PDT group were asymptomatic in this
study. PDT is able to attack only tumor cells with accumulated
photosensitizer while preserving the surrounding normal
brain cells without a bystander effect because singlet oxygen
has a short migration distance of 0.02–1mm and a short life-
time in the range of 0.04–4 ms.37,38 Therefore, the asymptom-
atic nature of our findings on DWI and ADC further supports
our hypothesis.

The other abnormalities seen on CE-T1WI and FLAIR were
similar to those reported previously19,20 and could not be used

to distinguish between the PDT and
non-PDT groups. These findings
were transiently observed in the sub-
acute phase after the operation but
not in the acute phase, which might
reflect inflammation and immunore-
activity after surgery and PDT.

In summary, our findings suggest
that a linear high signal on DWI
accompanied by a decline in ADC val-
ues after PDT are purely PDT-induced
MR imaging changes. Although PDT-
induced MR imaging changes on
DWI and in ADC values are transient
and disappear by around 30days, they
seem to be useful for confirming the
PDT-irradiated area. To our knowl-
edge, this is the first study to show the
usefulness of DWI and ADC values
for monitoring the PDT-induced
acute response of malignant glioma.
However, our study also had several
limitations. First, the number of
patients treated with PDT was small.
Second, the study was conducted at a
single institution. Third, the ROIs
for the ADC values reflected some
but not all of the regions in which
PDT was suspected to have had an
effect. Fourth, surgery-related changes
before PDT were not confirmed intra-
operatively in 2 of the 14 patients in
the PDT group. Finally, this study
could not fully examine the utility of
DWI and ADC values when monitor-
ing recurrence and progression after
PDT because the follow-up time was
relatively short. Six of 14 patients in
the PDT group experienced tumor re-
currence, and only 3 patients exhibited
local recurrence during follow-up. In

contrast, all patients in the non-PDT group had recurrence,
which was local in 6 patients. Most interesting, all the local recur-
rences in the PDT group arose from the nonirradiated area,
which did not show a high signal on DWI. Further studies are
needed to clarify the association of our findings with pathologic
mechanisms and their long-term impact. Nevertheless, findings
that the visually apparent changes on DWI and the change in
ADC values were consistent across all PDT patients in this study
are clinically worthwhile.

CONCLUSIONS
This study provided new evidence that the acute response of ma-
lignant glioma to PDT could be detected as linear high signals on
DWI and a decline in ADC values that were asymptomatic and
transient. These linear high signals on DWI may be useful for
confirming the PDT-irradiated area.

FIG 5. DWI (A) and a schematic illustration of A (B) show the post-PDT changes in irradiated and
nonirradiated areas on day 1 for 1 patient in the PDT group. The circle with the solid line indicates
the area with PDT irradiation (w/PDT). The circle with the dotted line indicates the area without
PDT irradiation (w/o PDT). The white arrow indicates the middle cerebral artery. The line graph
shows the postoperative time-dependent changes in ADC values in areas with PDT (thick line)
and without PDT (thin line) (C).
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