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Clinically Relevant Imaging Features for MGMT Promoter
Methylation in Multiple Glioblastoma Studies: A Systematic

Review and Meta-Analysis
X C.H. Suh, X H.S. Kim, X S.C. Jung, X C.G. Choi, and X S.J. Kim

ABSTRACT

BACKGROUND: O6-methylguanine methyltransferase (MGMT) promoter methylation status has been reported as a prognostic bio-
marker in clinical trials.

PURPOSE: Our aim was to systematically evaluate imaging features of MGMT promoter methylated glioblastoma and to determine the
diagnostic performance of MR imaging for prediction of MGMT promoter methylation in patients with newly diagnosed glioblastoma.

DATA SOURCES: A computerized search of Ovid MEDLINE and EMBASE up to February 27, 2018, was conducted.

STUDY SELECTION: We selected studies evaluating imaging features of MGMT promoter methylated glioblastoma and the diagnostic
performance of MR imaging for prediction of MGMT promoter methylation.

DATA ANALYSIS: Pooled estimates of sensitivity and specificity were calculated using a hierarchic logistic regression model. Meta-
regression and sensitivity analysis were performed.

DATA SYNTHESIS: Twenty-two articles including 2199 patients were included. MGMT promoter methylated glioblastoma is likely to
show less edema, high ADC, and low perfusion. Ten articles including 753 patients were included in the meta-analysis. The summary
sensitivity was 79% (95% CI, 72%– 85%), and the summary specificity was 78% (95% CI, 71%– 84%). In the meta-regression, MGMT promoter
methylation and mean age were associated with heterogeneity. Sensitivity analysis excluding 1 study resolved the heterogeneity.

LIMITATIONS: Included studies used a variety of different MR imaging techniques to predict MGMT promoter methylation.

CONCLUSIONS: MGMT promotor methylated glioblastoma is likely to show less aggressive imaging features than MGMT promotor
unmethylated glioblastoma. Despite the variety of different MR imaging techniques used, MR imaging in patients with newly diagnosed
glioblastoma was shown to have the potential to predict MGMT promoter methylation noninvasively.

ABBREVIATIONS: DCE � dynamic contrast-enhanced imaging; HSROC � hierarchic summary receiver operating characteristic; IDH � isocitrate dehydrogenase;
MGMT � O6-methylguanine methyltransferase; PRISMA � Preferred Reporting Items for Systematic Reviews and Meta-Analyses; QUADAS-2 � Quality Assessment
of Diagnostic Accuracy Studies-2; WHO � World Health Organization

Epigenetic silencing of the O6-methylguanine methyltransferase

(MGMT) gene by promotor methylation compromises DNA

repair,1 and MGMT promoter methylation status has been iden-

tified as a predictive biomarker for an alkylating chemotherapy

response.2,3 In addition, MGMT promoter methylation status has

been reported as a prognostic biomarker in clinical trials,4,5 and a

molecular-based recursive partitioning analysis model has re-

cently been introduced as a potentially superior stratification

variable in a clinical trial.6 Moreover, there is increasing evidence

of the value of temozolomide monotherapy as a reasonable

alternative to radiation therapy in elderly patients with MGMT

promoter methylation.7,8 Furthermore, MGMT promoter

methylation status has been reported as a strong predictor of

pseudoprogression.9

Methylation-specific polymerase chain reaction of histo-

pathologic specimens is considered a criterion standard method
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for the diagnosis of MGMT promoter methylation.2 However,

tissue-based genomics or epigenomics is generally invasive, and

spatial and/or temporal intratumoral heterogeneity may reduce

the value of invasive tissue-based genomic or epigenomic analysis.

In cases of glioblastoma, a repeat operation or tissue sampling is

also rarely performed at tumor recurrence.10 These tumor hetero-

geneities may provide opportunities for medical imaging, which

could characterize the entire tumor in a noninvasive and repeat-

able way. Therefore, noninvasive, comprehensive, and repetitive

assessments to predict MGMT promoter methylation may have

great potential in routine clinical practice and may help in assess-

ing prognosis or treatment response in patients with newly diag-

nosed glioblastoma.

Several studies have reported the imaging features and/or the

diagnostic performance of MR imaging for the prediction of

MGMT promoter methylation in patients with newly diagnosed

glioblastoma.11-32 A diverse array of MR imaging modalities, in-

cluding conventional MR imaging, diffusion-weighted imaging,

diffusion tensor imaging, dynamic susceptibility-weighted con-

trast-enhanced imaging, dynamic contrast-enhanced imaging

(DCE), arterial spin-labeling, susceptibility-weighted imaging,

and amide proton transfer, have been used for such purposes.

Recently, radiomics approaches using high-throughput quantita-

tive imaging features have also been reported from various

institutions.13,14,17,18,31

However, the imaging prediction of MGMT promoter meth-

ylation has not yet been systematically evaluated, to our knowl-

edge. Therefore, we systematically evaluated the imaging features

of MGMT promoter methylated glioblastoma and determined the

diagnostic performance of MR imaging for the prediction of

MGMT promoter methylation in patients with newly diagnosed

glioblastoma.

MATERIALS AND METHODS
This study was performed and reported in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines.33 We established the following

research questions: What are the imaging features of MGMT

methylated glioblastoma in patients with newly diagnosed glio-

blastoma, and what is the diagnostic performance of MR imaging

for prediction of MGMT promoter methylation?

Literature Search
A computerized search of Ovid MEDLINE and EMBASE up to

February 27, 2018, was conducted to identify studies evaluating

the imaging features of MGMT promoter methylated glioblas-

toma and the diagnostic performance of MR imaging for the pre-

diction of MGMT promoter methylation in patients with newly

diagnosed glioblastoma. The search terms combined synonyms

for “glioblastoma,” “MGMT,” and “MR imaging” as follows:

((glioblastoma*) OR (glioma*)) AND ((methylguanine-DNA-

methyltransferase) OR (O6-methylguanin-DNA-methyltrans-

ferase) OR (MGMT)) AND ((MR imaging) OR (MR imaging) OR

(MR imaging)). The bibliographies of identified studies were

screened manually to expand the search. The systematic search

was limited to English-language publications.

Inclusion Criteria
Studies were included if they satisfied all of the following criteria:

1) patients with newly diagnosed glioblastoma (grade IV glioma

based on the World Health Organization [WHO] classification

criteria34,35); 2) patients who underwent preoperative MR imag-

ing including conventional MR imaging, advanced MR imaging,

or a radiomics approach using high-throughput quantitative im-

aging features; 3) a reference standard based on methylation-spe-

cific polymerase chain reaction for MGMT promoter methyl-

ation; and 4) sufficient detail for acquisition of the imaging

features of MGMT promoter methylated glioblastoma or recon-

struction of 2 � 2 tables for determination of the diagnostic per-

formance of MR imaging for prediction of MGMT promoter

methylation in patients with newly diagnosed glioblastoma.

Exclusion Criteria
Studies were excluded if they met any of following criteria: 1) case

reports/series including �10 patients; 2) conference abstracts, re-

views, editorials, letters, or comments; 3) a study population in-

cluding patients with recurrent glioblastoma; 4) studies focusing

on subjects in whom techniques other than the MR imaging were

used to diagnose MGMT promoter methylation; and 5) studies

with a partially overlapping population (for the meta-analysis). In

the event of an overlapping population or study period, the largest

and latest study population was used. Authors of the studies were

contacted for provision of further data when 2 � 2 tables could

not be calculated.

Data Extraction and Quality Assessment
A standardized form was used to extract the following informa-

tion from the selected studies—1) patient characteristics: sample

size, number of patients with MGMT promoter methylation, his-

tology of underlying disease (WHO grade), mean age (range), and

male/female ratio; 2) study characteristics: authors, publication

year, institution, patient recruitment period, study design (pro-

spective versus retrospective), study enrollment (consecutive ver-

sus nonconsecutive), the reference standard, interval between MR

imaging and the reference standard, and blinding to the reference

standard; 3) MR imaging characteristics: magnetic field strength,

scanner manufacturer, scanner model, number of head coil chan-

nels, types of MR imaging techniques, specific technical parameters,

imaging features of MGMT promoter methylated glioblastoma; 4)

MR imaging interpretation: number of readers, reader experience,

and blinding to the reference standard; and 5) cutoff values for diag-

nosing MGMT promoter methylation and diagnostic performance

of MR imaging for prediction of MGMT promoter methylation in

patients with newly diagnosed glioblastoma.

Methodologic quality assessment was evaluated according to

the Quality Assessment of Diagnostic Accuracy Studies-2

(QUADAS-2) criteria.36 The literature selection, data extraction,

and quality assessment were conducted independently by 2 re-

viewers (C.H.S. and H.S.K.). If disagreement occurred, a third

reviewer (S.J.K.) was consulted to reach a consensus.

Data Synthesis and Analysis
Identification of the imaging features of MGMT promoter meth-

ylated glioblastoma and the diagnostic performance of MR imag-
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ing for the prediction of MGMT promoter methylation in patients

with newly diagnosed glioblastoma were the primary outcomes of

the study. To identify their sensitivities and specificities, we re-

constructed 2 � 2 tables from the included studies. If the diagnos-

tic performances of several MR imaging techniques or multiple

readers were assessed separately, the results with higher diagnostic

performance were chosen.

Heterogeneity was evaluated by means of the following: 1) the

Cochran Q test, with P � .05 indicating the presence of heteroge-

neity; 2) the Higgins inconsistency index (I2) test, with the degree

of heterogeneity being interpreted as follows: I2 � 0%– 40%, het-

erogeneity might not be important; 30%– 60%, moderate heter-

ogeneity may be present; 50%–90%, substantial heterogeneity

may be present; and 75%–100%, considerable heterogeneity37; 3)

visual assessment of a coupled forest plot for the presence of a

threshold effect—that is, a positive correlation between sensitivity

and the false-positive rate; and 4) a Spearman correlation coeffi-

cient of �0.6 implying a considerable threshold effect.38

The pooled summary estimates of sensitivity and specificity

were calculated using hierarchic logistic regression modeling—

that is, bivariate and hierarchic summary receiver operating char-

acteristic (HSROC) modeling.39-41 An HSROC curve with 95%

confidence and prediction regions was plotted, and the area under

the HSROC curve was calculated. Publication bias was analyzed

using the Deeks funnel plot, and statistical significance was tested

using the Deeks asymmetry test.42

A meta-regression was performed to explain the effects of

study heterogeneity. The following covariates were analyzed for

the bivariate model: 1) the percentage of MGMT promoter meth-

ylation in the study population (�49.5% [median value of the

included studies] versus �49.5%); 2) mean age (younger than 59

years [median value of the included studies] versus 59 years or

older); 3) number of MR imaging readers (1 versus �2); 4) blind-

ing to the reference standard for MR imaging readers; 5) magnetic

field strength (3T versus 1.5T); and 6)

the use of radiomics approaches. Sub-

group analyses according to studies us-

ing apparent diffusion coefficient and

perfusion were conducted. In addition,

sensitivity analyses were reassessed with

the exclusion of 1 study with a lower di-

agnostic performance.
All statistical meta-analyses were

performed by one of the authors

(C.H.S., with 4 years of experience in

conducting systematic reviews and

meta-analyses) using the “midas” and

“metandi” modules in STATA 10.0

(StataCorp, College Station, Texas) and

the “mada” package in R statistical and

computing software, Version 3.4.1 (http://

www.r-project.org). P values � .05 indi-

cated statistical significance.

RESULTS
Literature Search
The study selection process is described
in Fig 1 and the On-line Appendix.

Twenty-two original articles evaluating the imaging features of

MGMT promoter methylated glioblastoma, including 2199 pa-

tients, were included in this study.11-32

Characteristics of the Included Studies
The patient and study characteristics of the included studies are

listed in On-line Table 1. The size of the study populations ranged

from 17 to 406 patients. Twenty-one of 22 studies included pa-

tients with newly diagnosed glioblastoma (WHO grade IV), and 1

study included high-grade glioma (WHO grades III and IV).25

One study was prospective in design.26 Twenty studies were ret-

rospective,11-25,27,28,30-32 and 1 study did not explicitly state the

design.29 Study enrollment was consecutive in 3 studies16,18,25

and not explicit in the remaining studies. Fifteen of 22 studies used

methylation-specific polymerase chain reaction as a reference stan-

dard to detect MGMT methylation,11,14-16,19-24,27,28,30-32 with the

other studies using DNA methylation analysis,18 pyrosequencing,13

immunohistochemical staining,29 or multiplex ligation-dependent

probe amplification,26 with the method not being stated in 3

studies.12,17,25

MR Imaging Characteristics of the Included Studies
The MR imaging characteristics are shown in On-line Table 2.

Ten studies used 3T scanners,12,13,15,16,18-21,23,25 5 studies used

1.5T scanners,22,24,29-31 3 studies used 1.5T and 3T scan-

ners,17,27,28 and 4 studies did not state the scanner

strength.11,14,26,32 A variety of different MR imaging techniques

was used to predict MGMT promoter methylation: conventional

MR imaging in 11 studies,11,13,14,17,26-32 DWI in 4 stud-

ies,19,20,22,24 CT/DWI/DTI/DSC in 1 study,25 DWI/DSC/SWI in 1

study,18 DCE/DTI in 1 study,21 DWI/arterial spin-labeling in 1

study,12 DSC in 1 study,23 DCE in 1 study,16 and amide proton

transfer in 1 study.15 Five studies used radiomics approaches from

machine learning– based classification.13,14,17,18,31 MR imaging

FIG 1. Flow diagram of the study-selection process.
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was interpreted by 1–3 readers, with the level of experience of the

readers ranging from 3 to 25 years. In 14 of 22 studies, the readers

were blinded to the MGMT promoter methylation status of pa-

tients11-14,16,17,20,21,25,28-32; however, this was not stated in the

remaining studies.

Quality Assessment
The results of the quality assessment according to the QUADAS-2

criteria are described in On-line Fig 1. The quality of the studies

was considered moderate, with 14 of the 22 studies satisfying at

least 4 of the 7 QUADAS-2 domains. In the patient-selection do-

main, 20 of 22 studies were considered to have an unclear risk of

bias because of nonconsecutive enrollment.11-15,17,19-32 In the in-

dex test domain, there was an unclear risk of bias in 8 studies

because it was unclear whether MR imaging analysis was per-

formed blinded to the reference standard.15,18,19,22-24,26,27 In the

reference standard domain, the reference standard was not re-

ported in 3 studies.12,17,25 In the flow and timing domain, the time

intervals between MR imaging and the reference standard were

not reported in 15 studies.11-14,16,17,19,20,25,27-32

Imaging Features of MGMT Promoter Methylated
Glioblastoma: A Systematic Review
Studies using conventional MR imaging demonstrated a variety of

imaging features of MGMT promoter methylated glioblastoma

(On-line Table 3). Two such studies revealed that MGMT pro-

moter methylated glioblastoma showed less edema than MGMT

promoter unmethylated glioblastoma.27,29 One study showed

that mixed-nodular enhancement was significantly more fre-

quent in MGMT promoter methylated glioblastoma,32 while ring

enhancement was more frequent in MGMT promoter unmethylated

glioblastoma.30,32 One study also showed that MGMT promoter

methylated glioblastoma was lateralized to the left hemisphere, while

MGMT promoter unmethylated glioblastoma was lateralized to the

right hemisphere.27 Furthermore, 1 study reported that glioblastoma

with a higher rate of MGMT promoter protein expression (� 20%)

was less necrotic than glioblastoma negative for, or with a lower rate

of, MGMT promoter protein expression.26

On DWI, MGMT promoter methylated glioblastoma showed

higher ADC values than MGMT promoter unmethylated glio-

blastoma.12,25 In addition, MGMT promoter methylated glioblas-

toma also had a higher minimum ADC value than MGMT pro-

moter unmethylated glioblastoma.20,24 Regarding perfusion,

studies using DSC demonstrated that the normalized relative tu-

mor blood volume was significantly lower in MGMT promoter

methylated glioblastoma than in MGMT promoter unmethylated

glioblastoma.23 In addition, studies using arterial spin-labeling

demonstrated that relative cerebral blood flow was also signifi-

cantly lower in MGMT promoter methylated glioblastoma than

in MGMT promoter unmethylated glioblastoma.12

Diagnostic Performance of MR Imaging for Prediction of
MGMT Promoter Methylation: A Meta-Analysis
Ten original articles, which included 753 patients, evaluated the

diagnostic performance of MR imaging in the imaging prediction

of MGMT promoter methylation in patients with glioblas-

toma.12-15,17,18,21,23,24,30 The sensitivities and specificities of the

individual studies were 56% to 90% and 61% to 91%, respectively.

A Q test demonstrated that heterogeneity was absent (Q � 0.222,

P � .447). The Higgins I2 statistic revealed moderate heterogene-

ity regarding both the sensitivity (I2 � 71.02%) and specificity

(I2 � 65.71%). A coupled forest plot of the sensitivity and speci-

ficity showed no threshold effect (Fig 2). The Spearman correla-

tion coefficient between the sensitivity and false-positive rate was

�0.285 (95% CI, �0.775– 0.420), also demonstrating no thresh-

old effect.

The summary sensitivity for all 10 studies was 79% (95% CI,

72%– 85%), and the summary specificity was 78% (95% CI, 71%–

84%; Fig 2). There was a small difference between the 95% confi-

dence and prediction regions in the HSROC curve, demonstrat-

ing a low possibility for the presence of heterogeneity among the

studies (On-line Fig 2). The area under the HSROC curve was 0.86

(95% CI, 0.82– 0.88). The Deeks funnel plot showed that the like-

lihood of publication bias was low (P � .40 for the slope coeffi-

cient; On-line Fig 3).

Exploration of the Heterogeneity
A meta-regression was performed to explain the causes of heter-

ogeneity (On-line Table 4). Among the potential covariates,

MGMT promoter methylation and mean age were associated with

heterogeneity. Number of MR imaging readers, blinding to the

reference standard for MR imaging readers, magnetic field

strength, and studies using a radiomics approach were not shown

to be significant factors affecting the heterogeneity.

Subgroup analysis according to studies using ADC showed

that the summary sensitivity was 83% (95% CI, 71%–96%) and

the summary specificity was 84% (95% CI, 74%–95%).12,24 Sub-

group analysis according to studies using perfusion showed that

the summary sensitivity was 72% (95% CI, 57%– 88%) and the

summary specificity was 82% (95% CI, 72%–92%).12,21,23

One study showed a relatively low diagnostic performance (a

sensitivity of 57% and specificity of 61%) in comparison with the

other studies.18 When a sensitivity analysis was performed with

the exclusion of this study,18 the heterogeneity in the sensitivity

and specificity was resolved, with a recalculated pooled sensitivity

of 82% (95% CI, 77%– 86%; I2 � 28.36%) and a specificity of 80%

(95% CI, 74%– 86%; I2 � 36.43%).

DISCUSSION
Our study found that MGMT promoter methylated glioblastoma

is likely to show less edema, high ADC, and low perfusion. In

addition, this study revealed that the diagnostic performance of

MR imaging for prediction of MGMT promoter methylation in

patients with newly diagnosed glioblastoma was within a clinically

acceptable range, even though various MR imaging techniques

were used. The summary sensitivity was 79% (95% CI, 72%–

85%), the summary specificity was 78% (95% CI, 71%– 84%),

and the area under the HSROC curve was 0.86 (95% CI, 0.82–

0.88). In the meta-regression, heterogeneity was demonstrated in

MGMT promoter methylation and mean age. In the sensitivity

analysis, the heterogeneities of the sensitivity and specificity were

resolved by removal of 1 study with outlying values, resulting in a

recalculated pooled sensitivity of 82% (95% CI, 77%– 86%) and a

specificity of 80% (95% CI, 74%– 86%). Despite the variety of MR
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imaging techniques used, MR imaging in patients with newly di-

agnosed glioblastoma was shown to have the potential for nonin-

vasive prediction of MGMT promoter methylation.

Imaging prediction of MGMT promoter methylated glioblas-

toma has not been widely used because of a lack of standardiza-

tion in reporting, lack of standardization in imaging sequence,

and uncertainty in terms of the criterion standard pathologic di-

agnosis of MGMT methylation status. In our study, we found that

MGMT promoter methylated glioblastoma is likely to show less

edema, high ADC, and low perfusion. In addition, studies using

ADC or perfusion showed clinically acceptable diagnostic perfor-

mance to predict MGMT promoter methylated glioblastoma.

Therefore, imaging sequences including ADC or perfusion and

corresponding reports of the results should be included. In terms

of the reference standard, 15 of 22 studies used methylation-spe-

cific polymerase chain reaction. Therefore, we cautiously recom-

mend methylation-specific polymerase chain reaction for the de-

tection of MGMT methylation status. Although a variety of

imaging sequences or reference standards was used, we believe

our study may help in guiding future research.

Although there are multiple studies describing the distinctive

imaging features of MGMT promoter methylated glioblas-

toma,16,19-24,26,27,29,30,32 some discrepancies do exist among

them. In our understanding, an exact mechanism for the imaging

prediction of MGMT promoter methylation has not been estab-

lished. The present study tried to focus on the imaging features of

MGMT promoter methylated glioblastoma and the overall diag-

nostic performance of the various MR imaging techniques. We

found that MGMT promoter methylated glioblastoma is likely to

show less edema, high ADC, and low perfusion. The potential

association between the imaging features and the overall diagnos-

tic performance of MR imaging for the determination of MGMT

promoter methylation status may have a predictive value for the

evaluation of treatment response in newly diagnosed glioblas-

toma. This study revealed that MR imaging has a clinically accept-

able diagnostic performance in the prediction of MGMT pro-

moter methylation, with a summary sensitivity of 79% (95% CI,

72%– 85%) and a summary specificity of 78% (95% CI, 71%–

84%). Therefore, MR imaging in patients with newly diagnosed

glioblastoma may potentially provide a noninvasive comprehen-

sive and repetitive assessment for MGMT promoter methylation.

However, due to the paucity of information regarding imaging

features of MGMT promoter methylated glioblastoma, further

study will be needed.

MGMT promoter methylation has been proposed as a predic-

tive biomarker for benefit from alkylating agent chemotherapy in

patients with isocitrate dehydrogenase (IDH) wild-type, but not

IDH-mutant gliomas. This is due to the close correlation between

IDH mutations and the presence of MGMT promoter methyl-

ation.43,44 One of the explanations for this correlation is that IDH

FIG 2. Coupled forest plots of the pooled sensitivity and specificity for the diagnostic performance of MR imaging for prediction of MGMT
promoter methylation in patients with newly diagnosed glioblastoma. Numbers are pooled estimates with 95% confidence intervals in paren-
theses and horizontal lines indicating 95% CIs.
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mutation is associated with a CpG island methylator phenotype in

glioma.43,44 Therefore, the determination of MGMT promoter

methylation status is clinically relevant in IDH wild-type lower

grade gliomas as well as IDH wild-type glioblastoma. However,

only 20%–30% of lower grade gliomas are IDH wild-type; there-

fore, due to the paucity of information reported so far, we could

not include IDH wild-type lower grade gliomas. Further studies

will be needed to answer the clinically relevant question.

The current study highlights 4 studies that evaluated the diag-

nostic performance of radiomics approaches in combination with

machine-learning methods.13,14,17,18 With increases in the use of

combined multiple imaging parameters to predict molecular

characteristics, many researchers have used advanced statistical

methods to increase the performance of such multiparametric

imaging parameters. In particular, machine learning– based clas-

sification models have been popular; these aim to establish pre-

dictive models for molecular parameters by integrating all the

available information from various MR imaging features.18 The

present study revealed a summary sensitivity of 79% (95% CI,

70%– 88%) and a summary specificity of 73% (95% CI, 66%–

81%) for radiomics approaches, which is within a clinically ac-

ceptable range. However, studies using radiomics approaches

showed slightly lower summary specificity than the other studies

without statistical significance (87% [95% CI, 80%–94%]; P �

.42). A possible reason for this significant difference is that ra-

diomics approaches, which are data-driven, may be extensively

affected by data quality. In addition, the step-by-step processes of

radiomics approaches, which include imaging technique, feature

extraction, feature selection, and classification by machine learn-

ing, vary substantially across institutions. Moreover, 3 studies

used conventional MR imaging,13,14,17 while another study used

multiparametric and multiregional MR imaging, including ad-

vanced techniques.18 Further effort to achieve the standardization

of radiomics approaches is required.

This study revealed moderate heterogeneity across the in-

cluded studies in both the sensitivity (I2 � 71.02%) and the spec-

ificity (I2 � 65.71%) measures. A meta-regression showed that

MGMT promoter methylation and mean age were associated with

heterogeneity. In addition, sensitivity analysis also demonstrated

that the heterogeneities in the sensitivity and specificity were re-

solved when a study with outlying values was removed (I2 �

28.36% and I2 � 36.43%, respectively). Although our meta-re-

gression and sensitivity analysis may have explained some of the

heterogeneity, further heterogeneity remains unexplained. A wide

variety of MR imaging techniques was used to predict MGMT

promoter methylation across the included studies: conventional

MR imaging,13,14,17,30 DWI/DSC/SWI,18 DWI/arterial spin-la-

beling,12 DCE/DTI,21 DWI,24 DSC,23 and amide proton trans-

fer.15 The use of these different MR imaging techniques across the

included studies is considered a major cause of study heterogene-

ity. To use MR imaging as a potential imaging predictor for mo-

lecular classification, the standardization of MR imaging acquisi-

tion, processing, and image analysis should be established.

This study is subject to several limitations. First, 22 studies

were included in the systematic review; however, only 10 studies

were included in the meta-analysis. In terms of imaging features

of MGMT promoter methylated glioblastoma, a small number of

studies for each technique were included. However, these studies

were the only currently available articles, and future studies will be

needed. Second, the included studies used a variety of different

MR imaging techniques to predict MGMT promoter methyl-

ation, and heterogeneity was reported in the sensitivity and spec-

ificity. To identify the source of the heterogeneity, we conducted a

meta-regression and sensitivity analysis. We conducted our sys-

tematic review and meta-analysis using robust methodology (hi-

erarchic logistic regression modeling39-41) and reported the study

results according to prestigious guidelines: PRISMA,33 the

Agency for Healthcare Research and Quality,45 and the Hand-

book for Systematic Reviews of Diagnostic Test Accuracy pub-

lished by the Cochrane Collaboration.46

CONCLUSIONS
MGMT promotor methylated glioblastoma is likely to show less

aggressive imaging features than MGMT promotor unmethylated

glioblastoma. Despite the variety of different MR imaging tech-

niques used, MR imaging in patients with newly diagnosed glio-

blastoma was shown to have the potential to predict MGMT pro-

moter methylation noninvasively.
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