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ABSTRACT

BACKGROUND AND PURPOSE: The diagnostic and prognostic potential of brain MR imaging before term-equivalent age is limited until
valid MR imaging scoring systems are available. This study aimed to validate an MR imaging scoring system of brain injury and impaired
growth for use at 29 to 35 weeks postmenstrual age in infants born at �31 weeks gestational age.

MATERIALS AND METHODS: Eighty-three infants in a prospective cohort study underwent early 3T MR imaging between 29 and 35
weeks’ postmenstrual age (mean, 32�2 � 1�3 weeks; 49 males, born at median gestation of 28�4 weeks; range, 23�6–30�6 weeks; mean
birthweight, 1068 � 312 g). Seventy-seven infants had a second MR scan at term-equivalent age (mean, 40�6 � 1�3 weeks). Structural images
were scored using a modified scoring system which generated WM, cortical gray matter, deep gray matter, cerebellar, and global scores.
Outcome at 12-months corrected age (mean, 12 months 4 days � 1�2 weeks) consisted of the Bayley Scales of Infant and Toddler
Development, 3rd ed. (Bayley III), and the Neuro-Sensory Motor Developmental Assessment.

RESULTS: Early MR imaging global, WM, and deep gray matter scores were negatively associated with Bayley III motor (regression
coefficient for global score � � �1.31; 95% CI, �2.39 to �0.23; P � .02), cognitive (� � �1.52; 95% CI, �2.39 to �0.65; P � .01) and the
Neuro-Sensory Motor Developmental Assessment outcomes (� � �1.73; 95% CI, �3.19 to �0.28; P � .02). Early MR imaging cerebellar
scores were negatively associated with the Neuro-Sensory Motor Developmental Assessment (� � �5.99; 95% CI, �11.82 to �0.16; P �

.04). Results were reconfirmed at term-equivalent-age MR imaging.

CONCLUSIONS: This clinically accessible MR imaging scoring system is valid for use at 29 to 35 weeks postmenstrual age in infants born
very preterm. It enables identification of infants at risk of adverse outcomes before the current standard of term-equivalent age.

ABBREVIATIONS: CA � corrected age; c- � corrected; CGM � cortical gray matter; DGM � deep gray matter; ICC � intraclass correlation coefficient; NSMDA �
Neuro-Sensory Motor Developmental Assessment; PMA � postmenstrual age; TEA � term-equivalent age

Preterm infants are at risk of brain injury and impaired brain

growth and consequently poorer outcomes in infancy and

childhood.1-6 Scoring of structural MR imaging to classify brain

injury and growth has been validated for use at term-equivalent

age (TEA) in infants born preterm.1,7 Initial systems were quali-

tative, focusing on classification of the severity of WM and corti-

cal gray matter (CGM) injuries.7-9 The degree of WM abnormal-

ity demonstrated significant associations with concurrent motor,

neurologic, and neurobehavioral performance10-13 and increas-
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ing WM abnormality was associated with poorer motor and cog-

nitive outcomes.1,2,5,7,14-16

Scoring systems of MR imaging at TEA were further developed

to include quantitative biometrics to measure the impact of sec-

ondary brain maturation and growth following preterm brain in-

jury.17 These brain metrics correlated with brain volumes and

differentiated preterm and term-born infants at TEA MR imag-

ing.17 At TEA, transcerebellar diameter was associated with fidg-

ety general movements at 3-month corrected age (CA),18 poorer

cognitive outcomes at 12-month CA,19 and poorer motor and

cognitive outcomes at 2-year CA.20 Reduced deep gray matter

area at TEA was associated with poorer motor and cognitive out-

comes,19 and an increased interhemispheric distance indepen-

dently predicted poorer cognitive development at 2-year CA.3

Reduced biparietal width at TEA predicted both motor and cog-

nitive outcomes at 2-year CA in infants born very preterm.3,21

Term-equivalent age MR imaging scoring systems have been

further developed to include evaluation of deep gray matter

(DGM) structures and the cerebellum.22 At TEA, global brain

abnormality scores were significantly associated with motor out-

comes at 2-years CA23; and cognitive outcomes, at 7 years.24,25

Deep gray matter scores were significantly associated with poorer

attention and processing speeds, memory, and learning.24,25

With safe earlier MR imaging now possible with MR compat-

ible incubators, valid scoring systems for use earlier than TEA are

required. The aim of this study was to validate an MR imaging

scoring system previously developed for very preterm infants at

TEA in a cohort of infants born �31-weeks gestational age with

MR imaging between 29 and 35 weeks’ postmenstrual age

(PMA).22 The study aimed to establish predictive validity for mo-

tor and cognitive outcomes at 12-months CA. Secondary aims

were to examine inter- and intrarater reproducibility and to ex-

amine relationships between global brain abnormality categories

and known perinatal risk factors. It was hypothesized that the

scoring system would be valid and reliable for use at this earlier

time point but with more infants classified with brain abnormal-

ities, due to immaturity rather than injury.

MATERIALS AND METHODS
Study Design and Participants
This prospective cohort study of infants born at �31-weeks ges-

tational age was conducted at the Royal Brisbane and Women’s

Hospital, Brisbane, Australia, between February 2013 and April

2015. Preterm infants were eligible if they had no congenital ab-

normality, and their parents/caregivers were English-speaking

who lived within a 200-km radius of the hospital.26 A reference

sample of healthy term-born infants was simultaneously recruited

to generate reference values and cut-points for the regional brain

measurements that form part of the scoring system. Inclusion

criteria for term-born infants were a gestational age at birth of

38 – 41 weeks; birthweight above the 10th percentile; an uncom-

plicated pregnancy, delivery, and postpartum period; and nor-

mal neurologic examination findings.26 Ethics approval was

obtained from the Royal Brisbane and Women’s Hospital Hu-

man Research Ethics Committee (HREC/12/QRBW/245) and

The University of Queensland (2012001060), and the trial was

registered with the Australian New Zealand Clinical Trials

Registry (ACTRN12613000280707).

MR Imaging Acquisition
Brain MR imaging was performed during sleep without sedation

between 30 and 32 weeks PMA or when the infant was medically

stable (range, 29 to 35 weeks PMA, early MR imaging) and again

at TEA (40 to 42 weeks PMA, term MR imaging). Infants were

scanned by using a 3T MR imaging scanner, Tim Trio (Siemens

Erlangen, Germany), using an MR compatible incubator with it’s

dedicated neonatal head coil (Nomag incubator; LMT Lammers

Medical Technology, Lübeck, Germany). Coronal, axial, and sag-

ittal T2-weighted HASTE (TR/TE, 2000/90 ms; flip angle,150°;

FOV, 200 � 160 mm; matrix, 320 � 256; section thickness, 4

mm), axial T1 TSE (TR/TE, 1490/90 ms; flip angle, 150°; FOV,

200 � 160 mm; matrix, 256 � 180; section thickness, 2 mm), and

axial multiecho T2 TSE images (TR/TE1/TE2/TE3, 10,580/27/

122/189 ms; flip angle, 150°; FOV, 144 � 180 mm; matrix, 204 �

256; section thickness, 2 mm) were acquired.

MR Imaging Scoring
A standardized MR imaging scoring system according to Ki-

dokoro et al22 was used to score all MRIs. An independent neu-

rologist with training in radiology and experienced in neonatal

MR imaging scoring (S.F.) performed the scoring. The scorer had

no knowledge of any clinical characteristics of the infants except

PMA at the time of scanning. Scoring was confirmed by a senior

neuroradiologist (A.C.). Modifications to scoring cut-points were

made by using the term reference data means and SDs.27,28 Scor-

ing items and parameters are detailed in On-line Table 1, a scoring

proforma is included in On-line Table 2, and On-line Figs 1–18

provide examples of lesion types and regional measurements.

Cerebral WM abnormality was rated on 6 components, with a

maximum total score of 15: cystic degeneration, focal signal ab-

normalities, delayed myelination, thinning of the corpus callo-

sum, dilated lateral ventricles, and reduction of WM volume.22

Myelination of the corpus callosum and posterior limb of the

internal capsule was expected by 36-week PMA, so all infants were

given a score of 2 for this item on early MR imaging. The CGM

was rated on 3 components with a maximum total score of 8:

signal abnormality, delayed gyration, and dilated extracerebral

CSF space. Cerebellar and DGM abnormalities were rated on sig-

nal abnormality and volume reduction with maximum total

scores of 6 for each.22 A total of WM, CGM, DGM, and cerebellar

scores yielded a global brain abnormality score (0 –35).22 Each of

the WM, CGM, DGM, cerebellar, and global scores could be fur-

ther categorized into no, mild, moderate, or severe brain abnor-

mality categories.22 The WM total scores were categorized as none

(0 –2), mild (3– 4), moderate (5– 6), or severe (�7) WM abnor-

malities. Cortical GM, DGM, and cerebellar categories used the

following total scores: none (0), mild (1), moderate (2), and se-

vere (�3). Total global scores were classified as normal (0 –3),

mild (4 –7), moderate (8 –11), or severe (�12) brain

abnormalities.

Six regional measurements form part of the scoring: thickness

of the corpus callosum (genu, body, and splenium), ventricular

diameter, biparietal width, interhemispheric distance, DGM area,
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and transcerebellar diameter. These measurements change with

PMA at the time of MR imaging as a result of head and brain

growth. To address this change and minimize the risk of con-

founding, we examined the relationship of each of these measures

with PMA at MR imaging to derive a correction method for PMA

at MR imaging. The PMA was determined on the basis of the

obstetric estimate measure of gestation at delivery.29 In the pre-

term group, early and term MR imaging data were pooled for each

of the regional measures, and cases with focal brain lesions were

removed to ensure that any linear relationship found was the re-

sult of age and not confounded by brain injury. For each measure

that demonstrated a linear relationship with PMA at MR imaging,

the regression coefficient (slope) was used to generate an equation

for correction, written as: Corrected Value � Measured Value �

Regression Coefficient � (40-PMA at MR Imaging). The correc-

tion was then applied to the full cohort. On-line Figs 8 –10 and 15

provide instructions for conducting regional measurements, cor-

recting the raw values, and scoring.

The regional measurements were also obtained for the term

reference sample, and examination of the relationship with PMA

at MR imaging was performed separately from that of the preterm

group. When linear relationships were found, measurements

were corrected as per the equation above. Following correction of

the term reference sample regional scores, means and SDs were

calculated, and these were used to create cut-points for scoring

each of the respective regional measurements.

Interrater reproducibility of MR imaging scoring was tested

on a separate sample with 20 MR scans from each time point

scored by a second blinded rater, a pediatric radiologist (J.B.).

Intrarater reproducibility was tested with 20 MR scans from each

time point rescored 1 month apart (S.F.).

Neurodevelopmental Outcome at 12-Months CA
All infants underwent neurodevelopmental assessment at 12-

months CA by an experienced physiotherapist blinded to MR

imaging findings and medical history. The Bayley Scales of Infant

and Toddler Development, 3rd ed. (Bayley III), was performed,

and composite scores for motor and cognitive performance were

generated.30 The Neuro-Sensory Motor Developmental Assess-

ment (NSMDA) evaluates neurologic and sensory motor func-

tion in addition to gross and fine motor performance, with total

scores and functional classifications used.31,32 The NSMDA at

12-months CA has good predictive validity for motor and cogni-

tive outcomes and cerebral palsy at 4-years CA for very preterm

infants33,34 and 24-month motor and functional outcomes for

infants with cerebral palsy.35

Statistical Analysis
Sample size calculations were based on qualitative evaluation of MR

images at TEA predicting 12-month outcomes,4 with 69 infants re-

quired to reject the null hypothesis with 90% power (at P � .05). A

sample of 80 infants was recruited to account for attrition and the

earlier PMA at MR imaging (29 to 35 weeks PMA).

The association between each of the 6 regional measurements

and PMA at MR imaging was analyzed by using mixed-effects

regression models for the preterm sample data and separately for

the term reference sample data with linear regression. When a

linear relationship was found, data were centered around the

mean and the relationship was examined to determine whether it

was quadratic. Correction equations were then applied to the raw

regional measures. Term reference sample mean and SD data

were used to generate scoring cut-points for each of the regional

measures. Paired t tests were used to determine statistically signif-

icant differences between early and term MR imaging item scores

in the preterm group.

The association between early MR imaging scores and 12-

month outcomes and term MR imaging scores and 12-month out-

comes was evaluated with univariable and multivariable linear re-

gression. Multivariable regression included potential confounders of

sex, social risk, and, for the NSMDA only, CA at assessment.

To examine the predictive validity of both early and term MR

imaging, we calculated sensitivity, specificity, and accuracy (per-

centage of cases correctly classified). Dichotomized MR imaging

and outcome data were used to construct 2 � 2 tables. MR imag-

ing category scores were dichotomized into normal/mild or mod-

erate/severe categories for each of the subscales and global scores.

Bayley motor and cognitive composite scores were dichotomized

(by ��1 SD) and the NSMDA functional classification scores, as

normal/minimal versus mild/moderate/severe/profound.

Inter- and intrarater reliability was evaluated by using intra-

class correlation coefficients (ICCs) (type 3, 1). Agreement was

evaluated by using the percentage level of accuracy, in which the

definition for accuracy was exact score �1 for the subscale scores

and exact score �2 for the global scores.

When we investigated perinatal risk factors, differences across

global brain abnormality score categories were determined by us-

ing Mann-Whitney U tests (dichotomous perinatal risk factors)

and Kruskal Wallis 1-way ANOVAs (continuous perinatal risk

factors). Analysis was performed by using the STATA statistical

package, Version 14 (StataCorp, College Station, Texas).

RESULTS
Participants
Of 214 eligible preterm infants, parents or guardians of 110 con-

sented to the study, of whom 83 had early MR imaging and 12-

month outcomes available and were included in this analysis (16

with no early MR imaging: 5 medically unstable, 1 death, 4 can-

cellations due to MR imaging equipment failure, 3 with no MR

imaging slots, 1 withdrawn, 2 with movement artefacts; 11 failed

to return for 12-month follow-up). Of these, 77/83 had a second

MR scan at term. Thirty-eight term-born infants were included in

the reference sample. Demographic data and MR imaging scores

are summarized in Tables 1–3; 12-month outcomes are summa-

rized in Table 4. There were minimal differences between those

participants with both early and term MR imaging and those with

only early MR imaging, except that all 6 participants who did not

undergo their term MR imaging were classified with a higher so-

cial risk.36,37 Given the established relationship between higher

social risk and poorer neurodevelopmental outcome and an in-

creased risk of cerebral palsy and to address this difference in our

cohort between early and term MR imaging, all multivariable

analyses included social risk as a potential confounder.38,39 All

term reference sample infants had a normal global brain abnor-

mality category score.
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Associations between Regional Brain Measurements and
PMA at MR Imaging
All preterm regional measures except the body of the corpus cal-

losum demonstrated linear relationships with PMA at MR imag-

ing (P � .01). In the term reference sample, linear relationships

were found only for transcerebellar diameter and the genu of the

corpus callosum. Results of regression analyses and corrected re-

gional measures for the early, term, and term reference sample

MRIs are presented in On-line Tables 3 and 4.

Findings in Each Scoring Domain at Early and Term
MR Imaging
Results for scoring items are presented in On-line Table 1. The

incidence of WM cystic lesions, CGM signal abnormality, and

WM volume reduction as measured by corrected biparietal width

remained stable between early and term MR imaging. A propor-

tion of signal abnormalities in the WM and DGM resolved be-

tween early and term MR imaging. A propensity to score worse at

term compared with early MR imaging was evidenced for each of

the following: ventricular dilation, interhemispheric distance,

volume reduction of the DGM and cerebellum, and thinning of

the corpus callosum. More infants had delayed gyral maturation

at early MR imaging compared with term MR imaging.

Predictive Validity of Early MR Imaging
Results of univariable and multivariable regression analyses be-

tween early MR imaging scores and neurodevelopmental out-

comes are presented in Fig 1 (first row); sensitivity, specificity,

and accuracy, in Table 5. Global, WM, and DGM scores on early

Table 1: Characteristics of preterm samples and term reference samplea

Birth and Maternal Data
Full Preterm Sample with Early

MRI (n = 83)
Preterm Sample with Additional

Term MRI (n = 77)
Term Reference Sample

(n = 38)
Gestational age at birth (wk) 28�4 [26�6–29�3], 23�6–30�6 28�5 [26�6–29�3], 23�6–30�6 39�6 [39–40�3], 38�2–41�3

Birth weight (g) 1068 (312), 494�1886 1076 (322), 494�1886 3509 (317), 2932�4330
Birth head circumference (cm) 25.62 (2.38), 20.5–30.5, n � 80 25.64 (2.43), 20.5–30.5, n � 75 34.71 (1.12), 32.5–37, n � 31
Males 49 (59%) 46 (60%) 19 (50%)
Multiple births 24 (29%) 21 (27%) 0 (0%)
Premature rupture of membranes 19 (23%) 18 (23%) 4 (12%) n � 33
Cesarean delivery 60 (72%) 56 (73%) 9 (27%) n � 33
Chorioamnionitis 14 (17%) 13 (17%)
Antenatal steroids 62 (75%) 57 (74%)
Magnesium sulphate 43 (65%), n � 66 41 (65%), n � 63
Higher social risk 40 (48%) 34 (44%) 5 (16%) n � 31

Note:—IQR indicates interquartile range.
a Early MRI, 29 to 35 weeks PMA; term MRI, 40 to 42 weeks PMA. Data are No. (%), median [IQR] or mean (SD), range.

Table 2: Characteristics of preterm samples and term reference samplea

Acquired Medical Factors From Birth to Early MRI (n = 83) From Birth to Term MRI (n = 77) Term Reference Sample (n = 38)
Patent ductus arteriosus 39 (47%) 36 (47%)
IVH 17 (20%) 16 (21%)
IVH grade 3 or 4 4 (5%) 4 (5%)
Periventricular leukomalacia 2 (2%) 2 (3%)
Hydrocephalus 2 (2%) 2 (3%)
NEC diagnosed or suspected 3 (4%) 2 (3%)
Confirmed sepsis 3 (4%) 2 (3%)
Total parenteral nutrition (days) 11 [8–14], 0–30 11 [8–14], 0–30
Postnatal corticosteroids 14 (17%) 14 (18%)
Ventilation (days) 3 [0–12], 0–48 2 [0–12], 0–48
CPAP (days) 15 [7–25], 0–47 30 [7–47], 0–81
Oxygen therapy (hr) 12 [1–125], 0–1515, n � 69 29 [2–370], 0–3912, n � 67
36-week PMA O2 requirement 23 (30%)
PMA at MRI (wk) 32�2 (1�3), 29�3–35�2 40�6 (1�3), 38�3–46�4 41�3 (1), 39�2–44
Weight at MRI (g) 1500 (352), 883–2715 Early MRI 1505 (359), 883–2715 3428 (378), 2500–4200, n � 31

Term MRI 3127 (627), 1900–5150

Note:—IVH indicates intraventricular hemorrhage; NEC, necrotizing enterocolitis; CPAP, continuous positive airway pressure.
a Data are No. (%), median [IQR] or mean (SD), range. Early MRI, 29 to 35 weeks PMA; term MRI, 40 to 42 weeks PMA.

Table 3: Characteristics of preterm sample and term reference
samplea

MRI Scores
Early
MRI

Term
MRI

Term Reference
Sample

White matter 3 [2–4] 1 [1–3] 0 [0–0]
Cortical gray matter 0 [0–1] 0 [0–1] 0 [0–0]
Deep gray matter 0 [0–1] 0 [0–1] 0 [0–0]
Cerebellum 0 [0–0] 0 [0–1] 0 [0–0]
Global score 4 [3–7] 3 [1–5] 0 [0–0]

a Early MRI, 29 to 35 weeks PMA; term MRI, 40 to 42 weeks PMA. Data are median
[IQR].

Table 4: Bayley III and NSMDA scores at 12-month corrected age
(n � 83)

Assessment Scores
12-mo outcomes (mean) (SD)

Age at assessment 12 months 4 days (1�2 wk)
Bayley III motor composite 96.96 (14.27)
Bayley III cognitive composite 104.64 (12.07)
NSMDA total 179.53 (18.81)

12-mo outcomes dichotomized (No.) (%)
Bayley III motor composite � �1 SD 15 (18%)
Bayley III cognitive composite � �1 SD 6 (7%)
NSMDA functional classification �2 7 (8%)
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MR imaging were associated with Bayley III motor outcome mul-

tivariably (global score: � � �1.31; 95% CI, �2.39 to �0.23; P �

.02). Early MR imaging WM, DGM, and global scores were asso-

ciated with Bayley III cognitive outcome (global � � �1.52; 95%

CI, �2.39 to �0.65; P � .01). Early MR imaging WM, DGM,

cerebellar, and global scores were associated with outcome on the

NSMDA (global � � �1.73; 95% CI, �3.19 to �0.28; P � .02).

The sensitivity of early MR imaging global scores to predict mo-

tor, cognitive, and NSMDA outcomes ranged from 33% to 50%,

specificity ranged from 86% to 87%, with the percentage of accu-

rately classified cases ranging from 77% to 83%.

Predictive Validity of Term MR Imaging
Univariable and multivariable regression analyses between term

MR imaging scores and neurodevelopmental outcomes are pre-

sented in Fig 1 (second row). Sensitivity, specificity, and accuracy

are presented in Table 5. At term MR imaging, WM, DGM, cere-

bellar, and global scores were associated with Bayley III motor and

cognitive and NSMDA scores. Global scores were associated with

Bayley III motor outcome (� � �1.71; 95% CI, �2.63 to �0.79;

P � .01), cognitive outcome (� � �1.32; 95% CI, �2.10 to

�0.53; P � .01), and NSMDA (� � �2.36; 95% CI, �3.62 to

�1.10; P � .01). The sensitivity of term MR imaging global scores

to predict motor, cognitive, and NSMDA outcomes ranged from

14% to 33%, specificity ranged from 90% to 92%, with the per-

centage of accurately classified cases ranging from 77% to 87%.

Inter- and Intrarater Reproducibility
Reliability and agreement results are presented in On-line Table 5.

At Early MR imaging, intrarater reliability ranged from 0.82 to

0.97 (ICC), and agreement, from 90% to 100%. Interrater reli-

ability was low for CGM (ICC � 0.08) but excellent for the other
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FIG 1. Associations between early (first row) and term (second row) MR imaging scores and neurodevelopmental outcome at 12-months
corrected age for the preterm cohort. Solid lines represent univariable regression analyses, and dashed lines represent multivariable analyses for
which sex, social risk and, for NSMDA only, corrected age at assessment were added.

Table 5: Sensitivity, specificity, and accuracy of early and term MRI scores categorized as moderate/severe to predict an outcome
of < �1 SD on the Bayley III or NSMDA functional classification of mild-profound dysfunctiona

12-Month Neurodevelopmental Outcome

Bayley III Motor Composite Score Bayley III Cognitive Composite Score NSMDA

Sensitivity Specificity
Correctly
Classified Sensitivity Specificity

Correctly
Classified Sensitivity Specificity

Correctly
Classified

Early MRI (n � 83)
WM 33 (12–62) 78 (66–87) 70 50 (12–88) 78 (67–87) 76 43 (10–82) 78 (67–86) 75
CGM 0 (0–22) 81 (70–89) 66 0 (0–46) 83 (73–91) 77 0 (0–41) 83 (73–91) 76
DGM 40 (16–68) 94 (86–98) 84 33 (4–78) 90 (81–95) 86 43 (10–82) 91 (82–96) 87
Cerebellum 13 (2–40) 93 (84–98) 78 17 (1–64) 92 (84–97) 87 29 (4–71) 93 (85–98) 88
Global score 33 (12–62) 87 (76–94) 77 50 (12–88) 86 (76–93) 83 43 (10–82) 86 (76–93) 82

Term MRI (n � 77)
WM 14 (2–43) 92 (82–97) 78 33 (4–78) 93 (84–98) 88 29 (4–71) 93 (84–98) 87
CGM 21 (5–51) 79 (67–89) 69 0 (0–46) 77 (66–87) 71 29 (4–71) 80 (69–89) 75
DGM 36 (13–65) 86 (75–93) 77 33 (4–78) 83 (72–91) 79 71 (29–96) 87 (77–94) 86
Cerebellum 21 (5–51) 92 (82–97) 79 33 (4–78) 92 (83–97) 87 43 (10–82) 93 (84–98) 88
Global score 14 (2–43) 90 (80–96) 77 33 (4–78) 92 (83–97) 87 29 (4–71) 91 (82–97) 86

a Sensitivity and specificity are percentage (95% CI); “Correctly Classified” is percentage; early MRI, 29 to 35 weeks PMA; term MRI, 40 to 42 weeks PMA.
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subscales (ICC � 0.76 – 0.86) and the global total (ICC � 0.89).

Interrater agreement ranged from 70% to 95%. At term MR im-

aging, intrarater reliability ICCs ranged from 0.74 to 0.96, with a

global score ICC of 0.97. Intrarater agreement ranged from 90%

to 100%. Interrater reliability once again showed lower reliability

for CGM (ICC � 0.66); however, the other subscale ICCs ranged

from 0.86 to 0.93, and the global score ICC was 0.93. Interrater

agreement ranged from 80% to 100%.

Perinatal Risk Factors
Perinatal risk factors were associated with increasing severity of

the MR imaging global brain abnormality category scores (On-

line Table 6). Early MR imaging was associated with gestational

age at birth, birth weight, patent ductus arteriosus, retinopathy of

prematurity, postnatal corticosteroids, ventilation, and oxygen

therapy. Term MR imaging was associated with gestational age at

birth, birth weight, higher social risk, retinopathy of prematurity,

ventilation, oxygen requirement at 36-weeks PMA, and the re-

quirement for home oxygen.

DISCUSSION
This clinically accessible scoring system of structural brain MR

imaging for use at 29 to 35 weeks PMA for infants born at �31-

week gestational age is valid. Early MR imaging WM, DGM and

global brain abnormality scores were associated with Bayley III

motor and cognitive scores and outcome on the NSMDA at 12-

months CA. Early cerebellar scores were also associated with the

NSMDA outcome. These associations were reconfirmed at term

MR imaging. In addition, term MR imaging cerebellar scores were

associated with Bayley III motor and cognitive outcomes.

Early MR imaging was more strongly associated with cognitive

than motor outcomes. The scoring system on which this study

was based has been used in 2 studies examining the relationships

between TEA MR imaging and cognitive outcomes at 7 years.24,25

Our results support previous findings at TEA and suggest that the

brain changes associated with adverse cognitive outcomes are al-

ready present as early as 29 to 35 weeks PMA.7

Of all MR imaging subscale scores, at early and term MR im-

aging, DGM demonstrated the strongest relationship with out-

come. This finding supports inclusion of DGM evaluation in

qualitative and semiquantitative scoring systems in this popula-

tion. Cerebellar scores on early MR imaging were associated with

NSMDA scores but not the Bayley III motor score. This finding is

interesting because the Bayley III motor scale focuses on motor

achievement, while the NSMDA evaluates the quality of motor

performance, including balance and postural reactions, functions

known to be modulated by the cerebellum. The NSMDA also

includes assessment of muscle tone, reflexes, and sensory motor

function, and at 12 months CA, has been shown to predict motor

and cognitive outcomes and cerebral palsy at 4 years in preterm

infants.33,34

The specificity of the scoring system is reasonable, indicating

that those infants whose global scoring category is moderate or

severe have a high probability of poor motor and cognitive out-

comes at 12-months CA. The sensitivity is relatively low, so not all

infants who progress to poor motor and cognitive outcomes will

be identified by this scoring system at early or term MR imaging;

however, it also means that the risk of false-positives is low. Par-

ents indicate a desire for prognostication and early identification

of outcomes,40 and a low false-positive rate is preferable to pro-

longed distress of a false-positive result causing parents to spend

years waiting for an adverse outcome that does not occur.41,42 A

combination of TEA MR imaging findings and 3-month CA gen-

eral movement assessment demonstrates improved predictive va-

lidity over TEA MR imaging alone,43-45 so evaluation of the rela-

tionships between this early MR imaging scoring system and

concurrent clinical measures and the combination of early MR

imaging and clinical measures to predict later outcomes is

warranted.

Our results indicate that term MR imaging scores demonstrate

stronger associations with 12-month outcomes than early MR

imaging scores. Term MR imaging associations described here are

stronger than those found by another group using the original

scoring system23; this finding suggests that the modified scoring

cut-points, based on term-born reference sample data, may be an

improvement over the original scale.27 Their outcome was at

2-years CA rather than 12-months CA in the present study. Stron-

ger associations of term MR imaging with outcomes may be due

to small focal lesions evident on early MR imaging having re-

solved by term MR imaging or volume reduction becoming more

apparent. Both of these require further exploration. Term MR

imaging scores presented here show a lower incidence of myeli-

nation delay compared with the cohort on which the scale was

originally based. In the present study, the T1 sequence was per-

formed at the end of the MR imaging when infants were often

beginning to wake up; therefore, it had a higher incidence of mo-

tion artefacts. For this reason, T2-weighted images were used to

score myelination delay with their improved contrast, and this

may have resulted in an overestimation of myelination compared

with the earlier study.22

CONCLUSIONS
This study presents a clinically accessible MR imaging scoring

system of brain injury and growth for use from 29 to 35 weeks’

PMA in infants born at �31-weeks gestational age that has good

reproducibility and significant associations with motor and cog-

nitive outcomes at 12-months CA. The tool is suitable for use in

research and for assisting clinical patient management.
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ERRATUM

The authors of “Validation of an MRI Brain Injury and Growth Scoring System in Very Preterm Infants Scanned at 29- to 35-Week

Postmenstrual Age” (AJNR Am J Neuroradiol 2017;38:1435– 42, https://doi.org/10.3174/ajnr.A5191) wish to clarify for the reader

that the image in On-line Fig 2 shows bilateral connatal cysts. The figure, along with its amended legend, is displayed below.

http://dx.doi.org/10.3174/ajnr.A5448

ON-LINE FIG 2. Bilateral connatal cysts, classified as cerebral WM,
cystic lesion, focal bilateral, score 2 (axial T2).

E8 Erratum Jan 2018 www.ajnr.org
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