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ORIGINAL RESEARCH
ADULT BRAIN

Initial Investigation into Microbleeds and White Matter Signal
Changes following Radiotherapy for Low-Grade and Benign

Brain Tumors Using Ultra-High-Field MRI Techniques
X J.-G. Belliveau, X G.S. Bauman, X K.Y. Tay, X D. Ho, and X R.S. Menon

ABSTRACT

BACKGROUND AND PURPOSE: External beam radiation therapy is a common treatment for many brain neoplasms. While external beam
radiation therapy adheres to dose limits to protect the uninvolved brain, areas of high dose to normal tissue still occur. Patients treated
with chemoradiotherapy can have adverse effects such as microbleeds and radiation necrosis, but few studies exist of patients treated
without chemotherapy.

MATERIALS AND METHODS: Ten patients were treated for low-grade or benign neoplasms with external beam radiation therapy only
and scanned within 12–36 months following treatment with a 7T MR imaging scanner. A multiecho gradient-echo sequence was acquired
and postprocessed into SWI, quantitative susceptibility mapping, and apparent transverse relaxation maps. Six patients returned for
follow-up imaging approximately 18 months following their first research scan and were imaged with the same techniques.

RESULTS: At the first visit, 7/10 patients had microbleeds evident on SWI, quantitative susceptibility mapping, and apparent transverse
relaxation. All microbleeds were within a dose region of �45 Gy. Additionally, 4/10 patients had asymptomatic WM signal changes evident
on standard imaging. Further analysis with our technique revealed that these lesions were venocentric, suggestive of a neuroinflammatory
process.

CONCLUSIONS: There exists a potential for microbleeds in patients treated with external beam radiation therapy without chemother-
apy. This finding is of clinical relevance because it could be a precursor of future neurovascular disease and indicates that additional care
should be taken when using therapies such as anticoagulants. Additionally, the appearance of venocentric WM lesions could be suggestive
of a neuroinflammatory mechanism that has been suggested in diseases such as MS. Both findings merit further investigation in a larger
population set.

ABBREVIATIONS: QSM � quantitative susceptibility mapping; R2
* � apparent transverse relaxation; RN � radiation necrosis; XRT � external beam radiation

therapy

External beam radiation therapy (XRT) is commonly used in

the treatment of many brain neoplasms. In benign and low-

grade neoplasms (meningiomas, neuromas, low-grade gliomas),

safe maximal surgical resection combined with XRT is usually the

standard of care. The prescribed dose is typically a course of

54 – 60 Gy in 30 fractions using conformal delivery with tech-

niques such as intensity-modulated radiation therapy. These dose

plans attempt to follow specific guidelines such as Quantitative

Analysis of Normal Tissue Effects in the Clinic (http://www.aapm.

org/pubs/QUANTEC.asp) to limit the dose to radiosensitive ar-

eas, including the uninvolved brain, brain stem, optic nerve, and

optic chiasm,1 as well as the hippocampus, which is known for its

role in neurogenesis.2,3 Due to the infiltrative nature of some neo-

plasms such as low-grade gliomas or the proximity of tumors to

normal brain in other neoplasms, even conformal radiation tech-

niques can result in some volume of healthy tissue receiving radi-

ation. The dose delivered to the normal brain can potentially

cause long-term effects later in the patient’s life.

Following XRT, there are numerous reports of clinical se-

quelae that are classified into acute, early-delayed, or late effects.4
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Acute and early-delayed adverse effects are usually temporary and

resolve spontaneously with minimal treatment or steroids. Late

effects are typically much more severe because they cause perma-

nent changes to the brain parenchyma, including radiation necro-

sis (RN), cavernous angiomas, and microbleeds,4 resulting in on-

going neurologic deficits.

RN is an adverse effect that may present a few years following

XRT; however, it can occur as early as 6 months and as late as 10

years following XRT. In some patients, regions of RN may be

small and do not produce symptoms. In others, progressive RN

can be seen with detrimental effects on the patient’s quality of

life.5 Symptoms ranging from headaches and drowsiness to mem-

ory loss, seizures, and focal deficits have been documented. Treat-

ments of RN vary from observation to steroids or antiangiogenic

agents.6 In some patients, surgical resection is required to debulk

necrotic areas to alleviate symptoms.

The exact cause of RN is not entirely understood, but the 2

main hypotheses developed in the past 50 years are related to

vascular and glial damage.4 The vascular hypothesis suggests

that radiation necrosis is secondary to an ischemic event due to

small-vessel injury, while the glial hypothesis suggests that

damage to the white matter precursor cells occurs during

XRT. Recently, the potential role of the immune response fol-

lowing XRT has been documented,7,8 implicating neuroin-

flammation as another mechanism contributing to the develop-

ment of RN.

In addition to frank RN, microbleeds detected on imaging

following XRT are a recent discovery.9,10 Generally, microbleeds

are thought to be either small deposits of hemosiderin, which can

be attributed to damage to the small vessels,11; or, following radi-

ation, microbleeds have been shown pathologically to be areas of

telangiectasia.12 Microbleeds may be indicative of future vascular

disease such as stroke.13 Microbleeds indicate not only that more

serious disease could occur in the future but also that the patient

could be put at risk of serious intracranial bleeding if started on

anticoagulants.14

Techniques such as SWI are becoming more prominent with

higher magnetic field strengths available clinically (3T) or for re-

search (�7T). These techniques make locating microbleeds in-

creasingly easier due to the increased SNR, which makes increased

resolution possible at higher magnetic fields, and the linear-with-

field-enhancement of the paramagnetic effect of the hemosiderin

deposits. However, the increased resolution can also lead to false-

positives in microbleed detection because small venous vascula-

ture that runs parallel to the magnetic field can be misinterpreted

as a microbleed. SWI, quantitative susceptibility mapping (QSM),

and apparent transverse relaxation (R2
*) have been previously

shown to be extremely sensitive to the vasculature and hemo-

siderin-rich microbleeds.15-18 These techniques are also sensitive

to white matter lesions, as shown in various multiple sclerosis

studies.19,20 Previous work from Reichenbach et al21 estimated

that these techniques are sensitive to venous vasculature of ap-

proximately 100 –200 �m in diameter.

Among patients with brain tumors, most studies to date have

investigated microbleeds and radiation necrosis among patients

who have high-grade neoplasms22,23; however, long-term RN

studies in this patient population may be less feasible due to the

shortened life expectancy of most patients with malignant glio-

mas and the difficulty in distinguishing treatment effects and tu-

mor progression. Additionally, these studies involve patients

treated with chemotherapy, which has been shown potentially to

influence the number of microbleeds present in the brain10,24 and

may confound the estimates of microbleeds due to radiation

alone.

This initial feasibility study presents results that focus on im-

aging microbleeds and white matter imaging changes using SWI,

QSM, and R2
* on patients treated for benign or low-grade neo-

plasms with radiation alone. These patients have a longer overall

survival following successful treatment and thus are at higher risk

of eventually experiencing delayed adverse XRT effects. It was

hypothesized that SWI, QSM, and R2
* may be useful imaging

techniques to detect late radiation changes among this patient

population. The ability to detect such changes would then war-

rant a larger scale investigation for patients who might be at risk of

longer term sequelae of their treatment (cognitive effects or focal

brain injury).

MATERIALS AND METHODS
Patient Recruitment
The study was approved by the human subjects’ research ethics

board of the University of Western Ontario. Ten patients (2

men, 8 women) were recruited from our affiliated cancer pro-

gram at the London Regional Cancer Program and were

screened for eligibility by the treating radiation oncologist

(G.S.B.). Eligibility requirements included patients who were

older than 18 years of age with a Karnofsky Performance Scale

score of �60 and were treated for benign or World Health

Organization grade I or II brain neoplasms within 12–36

months of their recruitment for the study. Treatments for their

neoplasms could have included surgical resection followed by

radiation therapy or primary radiation therapy alone. As per

protocol, patients underwent an initial imaging session at the

time of enrollment and a second session 12–24 months later to

detect any evolution in imaging changes.

MR Imaging
Patients were scanned on a 7T MR imaging machine. This scanner

underwent an upgrade between visits for some of the patients.

Preupgrade, an Agilent/Siemens 7T MR imaging scanner (Agi-

lent, Santa Clara, California) with a 15-channel transmit/31-re-

ceive channel coil was used. Postupgrade, a Siemens 7T Magne-

tom Step 2.3 MR imaging scanner (Siemens, Erlangen, Germany)

with an 8-channel transmit/32-receive channel coil was used. All

patients had their initial scan performed on the preupgrade scan-

ner. Three patients had their second visit on the preupgrade scan-

ner, while 3 had their second visit on the postupgrade scanner. An

anatomic T1WI was obtained (preupgrade: MPRAGE, 1-mm iso-

tropic voxel, scan time of 5 minutes 45 seconds; postupgrade:

MP2RAGE, 0.8-mm isotropic voxel, scan time of 8 minutes 26

seconds); and a CSF-attenuated magnetization-prepared FLAIR

sequence (preupgrade: 1-mm isotropic resolution, scan time of 12

minutes 42 seconds; postupgrade: not acquired) was acquired for

registration to clinical scans. A multiecho gradient-echo (pre-

upgrade: multiecho gradient-echo, 1 mm in-plane resolution,
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1.5-mm sections, TR � 40 ms, TE � 2.4 ms, echo spacing � 3.3

ms, echoes � 6, flip angle � 13°, generalized autocalibrating par-

tially parallel acquisition � 2.1; postupgrade: multiecho gradient-

echo, 1-mm in-plane resolution, 1.5-mm sections, TR � 40 ms,

TE � 4.9 ms, echo spacing � 4.5 ms, echoes � 6, flip angle � 13°,

generalized autocalibrating partially parallel acquisition � 2) se-

quence was acquired. A less sensitive form of imaging had to be

used postupgrade due to vendor constraints on the number of

transmit coils.

Postprocessing
The multiecho gradient-echo data set was acquired and postpro-

cessed into SWI, R2
* and QSM maps using in-house software.

QSM
The implementation of QSM used a preconjugate gradient

method25 and was compared with QSM using the MEDI toolbox

in Matlab (MathWorks, Natick, Massachusetts)17; however, the

data from the preupgrade scanner was not optimized for MEDI

processing. The algorithm uses the phase information that is tem-

porally unwrapped over each echo with the background field con-

tributions being removed with a Gaussian high-pass filter of 11

mm to produce the local frequency shift. The QSM image was

calculated by performing the regularized inversion demonstrated

in Reichenbach et al.21 Postupgrade data were run through both

the preconjugate gradient and MEDI toolbox; however, only data

from the preconjugate gradient method were analyzed using the

postupgrade data.

R2
*

R2
* was computed with a nonlinear least-squares monoexponen-

tial fit with a voxel spread function for correction.26

SWI
An 11-mm Gaussian high-pass filter was used to filter the

phase and was fit with respect to TEs using a weighted nonlin-

ear least-squares function to calculate the local frequency-shift

map. A frequency mask of 15 Hz was then applied to an average

magnitude image from all echoes to create an SWI using in-

house software. Finally, Matlab (MathWorks) was used to cre-

ate a minimum-intensity-projection image through 7 mm (7

sections) of the SWI.

Dose Plan Overlay
Treatment dose plan and planning CT and MRIs were retrieved

and were registered to the research MR imaging with the FMRIB

Linear Image Registration Tool (FLIRT; http://www.fmrib.ox.

ac.uk).27 It was found beneficial to crop the CT simulator session

to include only the head including just a few sections below the

cerebellum from the CT and a T1WI without the use of skull-

stripping. The matching was determined to be within the error of

the 3-mm dose grid. CERR (http://cerr.info/about.php)28 was

used to export the dose plan.

Radiographic Assessment
Images (SWI, MPRAGE, and FLAIR) were reviewed by 2 board-

certified neuroradiologists (K.Y.T., D.H.) blinded to the history

of the patient. Both radiologists reviewing the images indepen-

dently and in a group setting established what constituted a mi-

crobleed. The microbleeds on all images were counted, and im-

ages were further assessed for vasculature and white matter

abnormalities.

Once identified, the microbleeds were manually segmented on

the SWI with ITK-SNAP 1.6 (www.itksnap.org)29 for further

analysis with R2
* and QSM.

RESULTS
Clinical Findings
Ten patients consented to imaging and were enrolled in the study.

The On-line Table provides a full description of their cases, treat-

ment, and current clinical status. A Mini-Mental State Examina-

tion was performed at the first visit, and a mean score of 29/30 �

0.9 indicated that patients were cognitively intact at assessment.

Patients were imaged at a mean of 26.7 � 7.5 months following

their treatment, and 6 of 10 patients returned for a second MR

imaging between 12 and 24 months (17.3 � 7.3 months) follow-

ing their first MR imaging. Four patients did not return for this

second scan. Two patients became ill for unrelated health reasons,

1 patient opted not to return for a second research scan, and 1

patient’s low-grade glioma evolved into a malignant glioma, pre-

cluding investigational re-imaging.

Radiologic Findings
No gross abnormalities or venous vessel density discrepancies

were observed on the SWI. One patient (patient 8) had a cavern-

ous angioma that had been previously detected on conventional

MR imaging before enrollment in this study.

Microbleeds
Six of 10 patients had microbleeds on the postradiation imaging.

In all except 1 patient (patient 6), microbleeds occurred in areas of

high dose (�45 Gy). Some microbleeds resolved between the ini-

tial and follow-up scans. The Table reports the full list of

microbleeds. In all patients, microbleeds had an R2
* of �80 sec-

onds�1 and QSM values lower than �0.25 ppm. Most microb-

leeds had halo artifacts on QSM as shown in Fig 1, which aided in

their detection.

White Matter Lesions
Three patients had periventricular or lobar lesions on their T1WI

and FLAIR images in the mid- (�30 Gy) to high-dose (�45 Gy)

Microbleeds at visit 1 and visit 2a

Patient
Visit 1

Microbleeds
Visit 2

Microbleeds
New

Microbleeds
Resolved

Microbleeds
1 7 4 2 5
2 5 X Did not return Did not return
3 4 X Did not return Did not return
4 0 0 0 0
5 2 2 0 0
6 2 0 0 2
7 0 0 0 0
8 0 0 0 0
9 1 X Did not return Did not return
10 5 X Did not return Did not return

Note:—X indicates patient did not return.
a All microbleeds occurred in areas of radiation of �45 Gy.
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regions, consistent with white matter changes reported after radi-

ation therapy30,31 as shown in Figs 2– 4.

Current Clinical Status
As shown in the On-line Table, most patients who enrolled in this

study are clinically stable following treatment for their neoplasms.

Aside from patient 10, who developed a glioblastoma, their symp-

toms are not directly related to their diagnosis or treatment.

DISCUSSION
Searches of prior literature led us to believe that this is the first

study that investigated vasculature and white matter changes with

7T MR imaging in patients treated for low-grade or benign neo-

plasms with radiation and an operation only. The potentially long

survival of this patient population posttreatment increases the

chance that they may experience late radiation adverse effects

compared with patients with higher grade lesions. Imaging bio-

markers that could identify patients at risk of delayed radiation

sequelae could be useful in this patient population to refine radi-

ation-delivery techniques and to explore mitigating strategies

such as pharmacologic interventions.32

The focus of this study was to determine the feasibility of this

technique being susceptible to late effects of XRT on the normal

parenchyma (1–5 years after therapy). Gross abnormalities were

not expected because these patients were clinically stable and

monitored by conventional imaging, but it was hypothesized that

it could be possible to detect subclinical lesions in the brain re-

ceiving high doses of radiation therapy. It is known that microb-

leeds have appeared in patients treated with chemotherapy or

radiation therapy for high-grade neoplasms.10 Additionally, Liu

et al17 demonstrated the ability to distinguish microbleeds from

venous vasculature using quantitative

methods. Therefore, an investigation

into the occurrence of microbleeds and

white matter signal changes as a poten-

tial imaging biomarker of late radiation

effects in patients treated for low-grade

brain neoplasms was performed. While

some of the imaging indicated poten-

tially demyelinating lesions based on the

white matter signal changes, a clinical

diagnosis was not possible.

In this cohort, 6 of 10 patients

showed microbleeds within the high-

dose regions; and in 5 of 6 patients, no

microbleeds were observed outside

the high-dose region. Long-term fol-

low-up is required to correlate with

clinical end points such as future vas-

cular incidents or cognitive adverse ef-

fects to determine whether microbleed

monitoring could be important in

these patients.

Although these patients do not

have the frequency of microbleeds as

shown in other studies of high-grade

neoplasms, the appearance of microb-

leeds is indicative of endothelial damage

within the high-dose region. This sug-

gests the importance of long-term mon-

itoring in this low-grade cohort because

these patients could be at a higher po-

tential for symptomatic vascular or cog-

nitive changes later in life.33,34 The ap-

pearance of microbleeds could also

indicate that further studies are required

FIG 1. Patient 1 with microbleeds illustrated by the white arrow on
SWI and QSM. Haloing artifacts can be seen on QSM. Venous vascu-
lature is apparent in the high-dose region on SWI.

FIG 2. Patient 2 showing white matter abnormalities within the high-dose region as evidenced on
FLAIR, R2

*, and SWI.
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to look at the effect of anticoagulants. Certain studies have already

shown that the appearance of microbleeds in other disease states

could be a contraindication for the use of anticoagulants,35 and

these findings suggest strategies attempting to limit radiation injury

using antiplatelet agents or anticoagulants in this patient population

should be evaluated cautiously. The disappearance of microbleeds

between visits could not be considered imaging artifacts or due to

true resolution as discussed by Yates et al.36

In addition to venous vasculature being present in high-dose

regions, veins within the white matter lesions with high doses can

be observed as shown in Fig 4. This is a common finding in MS

and acute disseminated encephalomyelitis.37 The white matter

lesions have been reported previously,30,31,38 with reports of cog-

nitive decline. A recent communication has shown that a 43-year-

old patient developed similar MS-type lesions following XRT.39

In MS, these lesions have been shown to have an immune re-

sponse that could be indicative of neuroinflammation. The ability

to show that these lesions have venules running through them

suggests that further studies are warranted to test this hypothesis

of neuroinflammation as a mediator of late radiation effects. Sup-

porting this finding was the detection of FLAIR hyperintensities

coupled with the low R2
* values, which could indicate demyelina-

tion, though the white matter signal changes could not be patho-

logically confirmed as demyelinating. Neuroinflammation as a

mediator of late radiation cerebral effects and as a potential ther-

apeutic target is an area of active investigation,32 and these find-

ings suggest imaging biomarkers such as SWI and R2
* might be

useful tools for noninvasive monitoring of neuroinflammatory

processes.

Additionally, the high R2
* can help

distinguish microbleeds and small

venules that have much lower R2
* values

(20 – 40 seconds�1). The halo effect and

large susceptibility value of the microb-

leeds on QSM as shown in Fig 1 could

lead to a reduced burden for neuroradi-

ologists when detecting microbleeds us-

ing automated methods.

A limitation of this study is the small

number of participants and an inability

to acquire follow-up imaging for all pa-

tients. This preliminary experience illus-

trates the feasibility of the technique in

this population and suggests that a study

of a larger cohort of patients with this imaging technique may be

warranted.

Another limitation of SWI techniques, in general, is that tita-

nium clips used following surgery result in blooming artifacts on

postprocessed images. The artifacts are due to the magnetic field

perturbation due to these clips causing the signal to decay at a

much higher rate, resulting in more distortions with lengthened

TEs. These artifacts may lead to being unable to identify microb-

leeds in tissue close to the skull. Finally, SWI is limited in its ability

to view the arterioles; however, Bian et al40 have shown that ar-

teries and veins can be imaged in the same acquisition. This

method could also decrease false-positives and improve microb-

leed detection, and it would also be beneficial in observing dam-

age to the arterioles.

CONCLUSIONS
This work is a preliminary study examining the long-term effects

of radiation therapy on patients treated for benign or low-grade

neoplasms using ultra-high-field MR imaging. This study pre-

sented the potential of microbleeds in patients treated with XRT

alone; the increased ability to detect microbleeds with ultra-high-

field MR imaging with the use of SWI, R2
*, and QSM; and the

potential for white matter lesions in the high-dose area. The re-

sults presented in this study warrant further investigation in a

larger patient cohort because these could have wide-ranging con-

sequences in the long-term management of these patients.
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