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ABSTRACT

BACKGROUND AND PURPOSE: Although most studies on epilepsy have focused on the epileptogenic zone, epilepsy is a system-level
disease characterized by aberrant neuronal synchronization among groups of neurons. Increasingly, studies have indicated that mesial
temporal lobe epilepsy may be a network-level disease; however, few investigations have examined resting-state functional connectivity
of the entire brain, particularly in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. This study primarily investigated
whole-brain resting-state functional connectivity abnormality in patients with mesial temporal lobe epilepsy and right hippocampal
sclerosis during the interictal period.

MATERIALS AND METHODS: We investigated resting-state functional connectivity of 21 patients with mesial temporal lobe epilepsy with
right hippocampal sclerosis and 21 neurologically healthy controls. A multivariate pattern analysis was used to identify the functional
connections that most clearly differentiated patients with mesial temporal lobe epilepsy with right hippocampal sclerosis from controls.

RESULTS: Discriminative analysis of functional connections indicated that the patients with mesial temporal lobe epilepsy with right
hippocampal sclerosis exhibited decreased resting-state functional connectivity within the right hemisphere and increased resting-state
functional connectivity within the left hemisphere. Resting-state network analysis suggested that the internetwork connections typically
obey the hemispheric lateralization trend and most of the functional connections that disturb the lateralization trend are the intranetwork
ones.

CONCLUSIONS: The current findings suggest that weakening of the resting-state functional connectivity associated with the right
hemisphere appears to strengthen resting-state functional connectivity on the contralateral side, which may be related to the seizure-
induced damage and underlying compensatory mechanisms. Resting-state network– based analysis indicated that the compensatory
mechanism among different resting-state networks may disturb the hemispheric lateralization.

ABBREVIATIONS: DMN � default-mode network; FC � functional connectivity or connection; HS � hippocampal sclerosis; mTLE � mesial temporal lobe epilepsy;
R-mTLE � mesial temporal lobe epilepsy with right hippocampal sclerosis; RS � resting-state; RSN � resting-state network; TLE � temporal lobe epilepsy

Up to 0.1% of the human population worldwide has temporal

lobe epilepsy (TLE), and 60%–70% of these cases are clas-

sified as mesial temporal lobe epilepsy (mTLE).1 mTLE is a

drug-refractory form of human epilepsy that is typically char-

acterized by hippocampal sclerosis (HS). Surgical intervention

can prevent temporal lobe seizure recurrence in patients with

mTLE.2 Aberrant neuronal synchronization is believed to be as

important as abnormal excitability with respect to epileptic

seizure occurrences,3,4 and resting-state functional connectiv-

ity (RS-FC) analysis is an effective approach for examining

neural synchronization.

Debilitating mTLE seizures are believed to originate pri-

marily from specific anatomic divisions of the temporal lobe.2
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However, investigations involving large-scale network analysis

have challenged this traditional conceptualization.3,5-7 Fur-

thermore, several studies have reported an mTLE-related de-

crease in basal RS-FC in the epileptogenic hemisphere in brains

of patients with mTLE, accompanied by contralateral compen-

satory mechanisms.8,9

Many mTLE studies have focused on the epileptogenic zone,

and most analyses that have investigated regions outside the hip-

pocampus have focused on structural imaging technology.1,10,11

In contrast, few whole-brain functional network analyses of

mTLE have been conducted. Structural MRI or electroencepha-

lography or both incompletely measure temporal changes during

the disease process,5 while resting-state fMRI takes serial images

during a time period that can capture the dynamic and evolving

changes related to epilepsy.12 The RS-FC derived from the fMRI

images reflects functional aberrations and offers a network per-

spective on the psychiatric and cognitive complications of

mTLE.7,13 We hypothesized that mesial temporal lobe epilepsy

with right hippocampal sclerosis (R-mTLE) is a functional disease

involving disturbances of RS-FC over the entire brain rather than

a local disease that is confined to the temporal lobe. To test this

hypothesis, we applied the multivariate pattern analysis method

in this study.14

MATERIALS AND METHODS
Participants
We studied 21 consecutive right-handed patients with R-mTLE

who underwent presurgical evaluation at Guangdong 999 Brain

Hospital. Diagnoses of R-mTLE and the lateralization of the sei-

zure foci of this disease were determined via comprehensive eval-

uations that included examinations of the patients’ detailed

medical histories, video-electroencephalography telemetry, and

neuroimaging. The presence of abnormally elevated T2 fluid-at-

tenuated inversion recovery signals in the hippocampus was used

as the diagnostic criterion for HS. In all patients, the HS site cor-

responded to the epileptogenic site. None of the patients with

R-mTLE had mass lesions (tumor, vascular malformation, or

malformations of cortical development) or traumatic brain in-

jury. HS was detected in all patients following qualitative histo-

pathologic analysis.15 Twenty-one healthy right-handed subjects

were recruited as controls; these controls were matched to the

examined patients with R-mTLE with respect to age, sex, and

years of education (Table). All controls were medically healthy

and free of any neurologic or psychiatric disorders at the time of

the study.

Standard Protocol Approvals, Registrations, and Patient
Consents
This study was approved by the Research Ethics Review Board of

the Institute of Mental Health of Southern Medical University.

Informed consent was obtained from each subject.

Imaging Protocol
During the experiments, subjects were instructed to keep their

eyes closed, relax, and remain awake. Subjects were asked not to

perform any specific cognitive exercises. After each session, the

subjects were asked whether they had fallen asleep during the

preceding session, and all subjects confirmed that they had re-

mained awake throughout the experiment. Functional MR im-

ages were acquired by using an Intera 1.5T MR scanner (Philips

Healthcare, Best, the Netherlands) with a gradient-echo EPI se-

quence. We used the following imaging parameters: TR/TE �

3000/50 ms; thickness/gap � 4.5/0 mm; FOV � 230 � 230 cm;

flip angle � 90°; matrix � 128 � 128; sections � 31. The duration

of each functional resting-state session was approximately 8 min-

utes, and 160 volumes were obtained for each patient.

Data Preprocessing
Data preprocessing was performed by using the Statistical Para-

metric Mapping software package (SPM8; http://www.fil.ion.

ucl.ac.uk/spm/software/spm12). For each subject, the first 10 vol-

umes of scanning data were discarded to reduce magnetic satura-

tion effects. The remaining 150 volumes of data were corrected by

registering and reslicing for head motion. Subsequently, these

volumes were normalized to standard echo-planar imaging tem-

plates in Montreal Neurological Institute space. The resulting im-

ages were spatially smoothed with a Gaussian filter with an 8-mm

full width at half maximum kernel, detrended to remove linear

trends, and temporally filtered with a Chebyshev bandpass filter

(0.01– 0.08 Hz) to reduce artifacts caused by respiration or cardiac

action. All fMRI volumes were registered to a Montreal Neuro-

logical Institute template before further time-series extraction for

ROIs. The Montreal Neurological Institute coordinates for the

ROIs in this template are shown in the On-line Table. Each re-

gional mean time-series was further corrected for the effects of

WM, CSF, and head movement by regression on the time-series of

WM, CSF signal and translations, and rotations of the head esti-

mated in the course of initial movement correction by image re-

alignment. The residuals of these regressions constituted the set of

regional mean time-series used for functional connectivity

analysis.16

The center coordinates were defined as the areas of peak activ-

ity identified in 5 meta-analyses that focused on error processing,

default-mode network (DMN), memory, language, and sensori-

motor functions. Although these functional networks were iden-

tified in task-related studies, they have been confirmed by many

previous resting-state fMRI studies and were further used as rest-

ing-state networks (RSNs).17-20 Inevitably, using this pre-existing

localization of ROIs can introduce bias; however, using a priori

ROIs also offers a substantial increase in power.4

We used the Pearson correlation coefficient to evaluate the

functional connectivity between each pair of ROIs. This approach

allowed us to obtain symmetric 160 � 160 matrices that captured

Demographic and clinical data
Mean (Range)

P ValueR-mTLE Control
Sample size 21 21 –
Sex (M/F) 9:12 9:12 1.000a

Age (yr) 28.5 � 7.9 (18–43) 25.1 � 5.7 (17–37) .187b

Education (yr) 11.6 � 2.3 (9–16) 11.5 � 2.7 (6–16) .891b

Onset (yr) 15.7 � 9.8 (2–34) – –
Duration (yr) 12.9 � 7.4 (3–33) – –

a Pearson �2 test.
b Two-sample t test.
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the resting-state functional network activity of each subject. After

removing the 160 diagonal elements of each functional connec-

tivity matrix, we extracted the upper triangle elements of these

connection matrices as classification features; therefore, the fea-

ture space for classification was spanned by the remaining (160 �

159) / 2 � 12,720 dimensional feature vectors. In this article, the

functional connections (FCs) for classification are referred to as

“features.”

Alternatively, an unsampled version of the automatic ana-

tomic labeling template was introduced for ROI definition, which

segmented the cerebrum into 600 ROIs. Further analysis by using

this template and selection of ROI radii are displayed in “ROI

Definition for the Entire Brain” in the On-Line Appendix.

Identification of Features with High Discriminative Power
The support vector machine recursive feature elimination algo-

rithm was originally proposed for gene selection21 and has been

applied in fMRI studies for the identification of multiple active

voxels.22 The support vector machine recursive feature elimina-

tion algorithm combines the support vector machine and

recursive feature elimination approaches to produce a multivari-

ate feature-selection algorithm. In the support vector machine

classification procedure, all samples are categorized into 2 parts.

One portion of the samples with class labels was used to train the

classifier, called “training samples.” The training samples can be

used to identify the parameters of the classifier. All training sam-

ples constructed the training set. The other portion of the samples

without class labels was used to test the effectiveness of the classi-

fier called “testing samples.” The classifier can predict the class

labels of the testing samples. The support vector machine classi-

fication was applied to the training set, and the discriminative

weight w� fi� of feature fi was obtained for each training sample.

The scoring function was defined as follows:

Score � f i� �

�
k � 1

n

�wk� f i��

n

In the equation above, fi represents the ith feature, wk� fi� repre-

sents the discriminative weight of feature fi in the kth sample, and

n is the number of training samples. The features fi,i � 1,2, · · ·, n

were then ranked by Score � fi�,i � 1,2, · · ·, n, and the feature

with the smallest score was eliminated. This procedure was re-

peated on the retained features until all features were eliminated.

To accelerate the computational process, we eliminated the half of

the remaining features with the smallest scores in each iteration of

the algorithm.

The details of identification of discriminative FCs are dis-

played in “Cross-Validation and Consensus Functional Connec-

tions” in the On-line Appendix.

Support Vector Classification and Performance
Evaluation

Support Vector Classification. After the dataset of features had

been prepared, linear support vector machines were used to solve

the classification problem.23 All pattern analyses were

implemented by using the LIBSVM software package

(http://www.csie.ntu.edu.tw/�cjlin/libsvm/).

Performance Evaluation. Based on the cross-validation results,

the performance of a classifier was quantified in terms of the gen-

eralization rate, sensitivity, and specificity.24 Notably, “sensitiv-

ity” represents the proportion of patients who were correctly clas-

sified, and “specificity” represents the proportion of controls who

were correctly classified. The overall proportion of correctly clas-

sified samples was evaluated by using the generalization rate.

RESULTS
Classification Results
The network analysis was based on the classification results. The

classification accuracy rates relative to the number of selected FCs

are indicated in Fig 1. Classification accuracies (expressed in

terms of the generalization rate) of �90% were achieved in clas-

sification approaches that used relatively few (approximately 10 –

50) FCs.

In particular, when the first 8 FCs were used, a sensitivity of

95.2% and a specificity of 95.2% were obtained (only 1 patient

and 1 control participant were not successfully identified). Fur-

thermore, if the support vector machine classification boundary

was replaced with the optimal classification boundary, a sensitiv-

ity of 95.2% and a specificity of 100% were obtained (only 1 pa-

tient was not successfully identified), which are reflected in Fig 2B.

When the first 23 connections were used, a sensitivity of 90.5%

and a specificity of 100% were obtained (only 2 patients were not

successfully classified). Furthermore, if the optimal classification

boundary was used, a sensitivity of 100% and a specificity of 100%

were obtained (all subjects were correctly classified), which were

also reflected by the receiver operating characteristic in Fig 2D.

Using the generalization rate as the applicable statistic, we de-

termined the permutation distribution of estimates, which are

shown in Fig 2A, -C; the results indicated that the classifier learned

the relationship between the data and the labels with a 	.0001

probability of being incorrect.

Because a leave-one-out cross-validation approach was used,

the results represent estimations of the classification accuracy for

the scanning results for a new subject; thus, these findings have a

direct diagnostic relevance. The receiver operating characteristic

curves of the classifiers, which were determined by using a leave-

one-out cross-validation approach, are depicted in Fig 2B, -D.

The area under the receiver operating characteristic curve for the

classification method was 99.6% when 8 FCs were used and 100%

when 23 FCs were used.

In the present study, each ROI was defined as a sphere with a

given center coordinate and a radius of 5 mm. Radii of 4 and 7.5

mm were also used for ROI definitions, but the classification re-

sults were not better than those of the radius of 5 mm, which are

displayed in On-line Fig 1.

Functional Connectivity Changes
The RS-FC analysis in this study primarily focused on R-mTLE-

related alterations in the strengths of FCs. The first finding of this

study was the hemispheric lateralization of the changes in RS-FC.

In summary, weaker connections in patients with R-mTLE rela-

tive to healthy controls were mainly located in the right hemi-
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sphere (Fig 3A), and stronger connections in patients with R-

mTLE relative to healthy controls were mainly distributed in the

left hemisphere (Fig 3B).

These altered FCs may be categorized as either intranetwork

connections, connecting nodes within the same functional net-

work; or internetwork connections, connecting nodes from 2 dif-

ferent functional networks. The second finding of this study was

that compared with healthy controls, patients with R-mTLE

showed a different internetwork pattern compared with the intra-

network connectivity changes.

Most intranetwork FCs were weaker, while more internetwork

FCs were stronger in the patients with R-mTLE compared with

controls (Fig 4A, -B).

DISCUSSION
In this study, we sought to validate the hypothesis that R-mTLE is

a disease with RSN disturbances. Multivariate pattern analysis

results indicated that R-mTLE-related changes in functional con-

nectivity predominantly follow this pattern: Weaker connections

were primarily distributed in the right hemisphere, while most of

the stronger connections were in the left hemisphere. Additional

RSN analysis demonstrated that most of the altered FCs—not

strictly associated with hemispheric lateralization—were intra-

network FCs; most of the FCs—which primarily obeyed the hemi-

spheric lateralization—were internetwork FCs. Specifically,

weaker connections were localized within the DMN, cingulo-

opercular network, and frontoparietal network, whereas stronger

connections were localized within the sensorimotor network.

RSN Analysis of Brain Regions beyond the Hippocampus
To validate the hypothesis that mTLE is a network disease, some

studies have investigated abnormalities in brain regions other

than the hippocampus.1,6,10,11,25,26 In addition, the support vec-

tor classification accuracy of structural MRI and DTI datasets that

exclude the hippocampus can reach approximately 90%.10 Given

that resting-state fMRI can capture dynamic and evolving changes

related to epilepsy,12 we applied RS-FC on the basis of fMRI data.

Although the hippocampus is particularly important for the iden-

tification of R-mTLE, this study sought to demonstrate that R-

mTLE is a disease affecting the RSN of the entire brain rather than

a local disease that is limited to hippocampal aberrations. The

ROI template used in this investigation, which facilitated the RSN

analysis and excluded the hippocampus, achieved classification

accuracies up to 95%. This result provides important evidence

that R-mTLE is a network disease characterized by functional

aberrations distributed across the entire brain. In addition, we

defined the epileptogenic zone through the use of a 2-sample t

test, which compared patients with R-mTLE with healthy con-

FIG 1. Classification results for patients with R-mTLE and healthy controls via leave-one-out cross-validation. The x-axis indicates the number
of connections involved in the classification; the y-axis indicates classification accuracy (as represented by the generalization rate). The subplot
illustrates the prediction results of all subjects with the highest accuracy, which used the first 8 and the first 23 most discriminative connections.
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trols, and this zone was added to the ROI template. Whole-brain

functional connectivity was determined on the basis of the 160 


1 ROIs mentioned above. The resulting classification accuracy

was not improved, and the identified discriminative connections

were identical to the results presented in this article.

Identification of FCs
From a functional integration perspective, RS-FC analysis exhib-

its advantages relative to other modalities,27 particularly when

multivariate pattern analysis methods are used.28 The support

vector machine recursive feature elimination method can predict

group membership at an individual subject level, and the results

obtained by using this method may be clinically useful29 because

the results can include unique information that may be over-

looked by univariate voxel-based morphometry approaches.30,31

As indicated in Fig 1, maximal classification accuracy (generaliza-

tion rate � 95.2%, area under the receiver operating characteristic

curve � 100%) was obtained by using only 23 features. We as-

signed connection strengths on the basis of the occurrence of

these connections in the leave-one-out cross-validation results

(Fig 3). As the number of features increased beyond 23, the clas-

sification accuracy generally decreased. This result suggests that

only a few of the 12,720 examined connections were highly

discriminative.

Different R-mTLE-Related RS-FC Changes in the
Epileptogenic and Contralateral Sides of the Brain
An initial finding of this study was that changes in RS-FC in pa-

tients with R-mTLE demonstrate hemispheric lateralization.

Weaker FCs in patients with R-mTLE were primarily distributed

in the right hemisphere (Fig 3A). However, most of the stronger

FCs in the patients with R-mTLE were located in the left hemi-

FIG 2. Classification evaluation. A, The permutation distribution of estimates produced by the linear support vector machine classifier (with
10,000 repetitions) if the first 8 most discriminating features are used. The x- and y-axes indicate the generalization rate and occurrence number;
GR0, is the generalization rate obtained by the classifier trained on the actual class labels. Using the generalization rate as the test statistic, this
figure demonstrates that the classifier learned the relationship between the data and the labels with a probability of being incorrect of 	.0001.
B, Receiver operating characteristic curves indicate the overall classification performance of the functional connectivity– based classification of
patients with R-mTLE and healthy controls. The area under the receiver operating characteristic curve (AUC) was 99.6% when the first 8
connections were used for classification. C, The permutation distribution of estimates produced by the linear support vector machine classifier
(with 10,000 repetitions) if the first 23 most discriminating features are used. D, Receiver operating characteristic curves indicate the overall
classification performance of the functional connectivity– based classification of patients with R-mTLE and healthy controls. The area under the
receiver operating characteristic curve was 100% when the first 23 connections were involved in the classification.
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FIG 3. Region weights and connection strengths categorized by hemisphere. The connections are displayed in a surface rendering of a human
brain. The thicknesses of the consensus connections in the leave-one-out cross-validation are scaled by their strengths (which were the
normalized occurrences of the first 23 connections during all iterations of the leave-one-out cross-validation). A, Connections with lower
strengths in patients with R-mTLE than in controls are depicted in light blue. B, Connections with greater strengths in patients with R-mTLE than
in controls are displayed in orange. The ROIs related to the selected consensus connections are also scaled by their weights (calculated as the
sum of the weights of all connections to and from the ROI) and are displayed. The ROIs are color-coded by functional network (cerebellum, red;
cingulo-opercular network, green; DMN, blue; frontoparietal network, cyan; visual network, rose; and sensorimotor network, yellow). The
numeric labels for the ROIs in this figure are provided in the On-line Table.
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FIG 4. Region weights and connection strengths viewed from inter- and intranetwork perspectives. The connections are displayed in a surface
rendering of a human brain. The thicknesses of the consensus connections in the leave-one-out cross-validation are scaled by their strengths
(which were the normalized occurrences of the first 23 connections during all iterations of the leave-one-out cross-validation). A, Internetwork
connections. B, Intranetwork connections. Connections with greater strengths in patients with R-mTLE than in controls are displayed in orange.
Connections with lower strengths in patients with R-mTLE than in controls are depicted in light blue. The ROIs related to the selected consensus
connections are also scaled by their weights (calculated as the sum of the weights of all connections to and from the ROI of interest) and are
displayed. The ROIs are color-coded as in Fig 3.
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sphere (Fig 3B). Previous studies have attributed the lateralization

of RS-FC in mTLE to compensatory mechanisms in the human

brain.8,9 However, this conclusion was derived from RS-FC anal-

yses that were restricted to the hippocampus and several other

brain regions that are closely related to mTLE. Furthermore, only

a small sample of patients with mTLE and even fewer patients

with R-mTLE were examined in the prior studies. Our study pro-

vides further support for the hypothesis that patients with mTLE

demonstrate decreased functional connectivity in the epilepto-

genic sides of their brains but exhibit contralateral compensatory

mechanisms. First, our study focused on brain regions outside the

hippocampus, thereby suggesting that the pathophysiology may

be more widely distributed than previously recognized,. The

weaker RS-FC in the contralateral hemisphere suggests a compen-

satory mechanism that involves the entire brain. Second, previous

studies have examined only a small number of patients with R-

mTLE. Relative to these prior studies, our investigation included a

larger number of participants with R-mTLE.

Further evidence is needed to validate the hemispheric later-

alization of the RS-FC in mTLE. To validate this hemispheric

lateralization, we also investigated GM and WM concentrations

and the GM and WM presenting with similar hemispheric later-

alizations, which are detailed in “Voxel-Based Morphometric

Analysis” in the Appendix and On-line Fig 2.

RSN Analysis of R-mTLE
The second finding of the current study is that the intranetwork

FCs were weakened, while the internetwork RS-FC was increased.

It is generally believed that the decrease in RS-FC reflects an im-

pairment in the functional network related to the corresponding

RSN, while an increased RS-FC may indicate enhanced function

due to the compensatory mechanism.32,33 Furthermore, most of

the FCs that did not conform to the observed pattern of hemi-

spheric lateralization were intranetwork FCs. In contrast, most

internetwork FCs followed the observed laterality patterns. This

result may indicate that as functional units, the RSN and the

hemisphere influence each other.

Intranetwork FCs that were weakened in patients with

R-mTLE relative to control subjects were mainly localized to the

DMN cingulo-opercular network and frontoparietal network. In

contrast, intranetwork FCs that were strengthened in patients

with R-mTLE relative to control subjects were localized to the

sensorimotor network. The DMN is characterized by task-in-

duced deactivation, which is essential for maintaining baseline

levels of brain activities related to self-awareness, episodic mem-

ory, and environmental monitoring.34 In recent years, the DMN

has been reported to be decreased in RS-FC and has attracted

considerable attention in mTLE research.35-37 Previous studies

also found that the RS-FC in the frontoparietal network was de-

creased in mTLE.37,38 The strength of most intranetwork connec-

tions in the DMN, cingulo-opercular network, and frontoparietal

network was reduced in patients with R-mTLE relative to healthy

controls in this study, consistent with a previous independent

component analysis– based study.38 This result may indicate that

R-mTLE produces disturbances in executive control functions for

the DMN, cingulo-opercular network, and fronto-parietal net-

work, which are believed to be closely related to executive control

tasks.39-41 Patients with mTLE demonstrate apparent executive

deficits.42-44 In previous studies, the sensorimotor network had

abnormal RS-FC and the patients with mTLE displayed cogni-

tive impairments.38,43,45 The increased RS-FC in the sensori-

motor network in the current study may be a compensatory

mechanism between the left and the right sensorimotor cortex

as shown in Fig 3B.

In contrast, internetwork connections between the aforemen-

tioned RSNs were generally stronger in patients with R-mTLE

than in control subjects. This phenomenon may have been pro-

duced by compensatory mechanisms. The increased RS-FC

strength reflects increased spontaneous synchronization among

brain regions, and previous studies have attributed increased

RS-FC in mTLE to underlying compensatory mechanisms.35 Sev-

eral age-related studies have reported that the weakening of short-

range connectivity and the strengthening of long-range connec-

tivity during aging are driven by functional segregation and

integration, respectively.14,46,47 In addition, a published article

reported that patients with mTLE demonstrated decreased local

functional connectivity and increased intrahemispheric func-

tional connectivity.33 However, the results obtained in our study

suggest that R-mTLE induces impairments in specific functional

networks and that the functional networks become more inte-

grated to compensate for deficits caused by these impairments.

We propose that the compensatory mechanism involves interac-

tions between distinct functional units and cannot simply be as-

sessed in terms of anatomic distance.

Finally, comparing Figs 3 and 4, we found that most intranet-

work FCs were interhemispheric FCs, which indicates that the

compensatory mechanism among different RSNs may disturb the

hemispheric lateralization.

Limitations and Future Work
There were several limitations in our study. First, it examined a

small sample. Our findings must be replicated with larger datasets

before the findings of this investigation can be broadly generalized

to patient populations with R-mTLE. Second, mesial temporal

lobe epilepsy with left HS was not considered in our study. In

future studies, we plan to address these limitations by conducting

multimodal network analyses to investigate patients with mesial

temporal lobe epilepsy with left HS and R-mTLE.

CONCLUSIONS
Based on the classification results, we found that compared with

connections of the healthy controls, weakened connections of the

patients with R-mTLE were primarily distributed in the right

hemisphere, whereas the majority of strengthened connections

were located in the left hemisphere. Additional RSN analyses

demonstrated that most of the altered FCs—not strictly associ-

ated with hemispheric laterality—were intranetwork FCs; most of

the FCs—which tended to obey the hemispheric laterality—were

internetwork FCs.
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