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REVIEW ARTICLE
METABOLIC BRAIN MAPPING

Molecular Imaging of Alzheimer Disease Pathology
K. Kantarci

ABSTRACT

Development of molecular imaging agents for fibrillar �-amyloid positron-emission tomography during the past decade has brought
molecular imaging of Alzheimer disease pathology into the spotlight. Large cohort studies with longitudinal follow-up in cognitively
normal individuals and patients with mild cognitive impairment and Alzheimer disease indicate that �-amyloid deposition can be detected
many years before the onset of symptoms with molecular imaging, and its progression can be followed longitudinally. The utility of
�-amyloid PET in the differential diagnosis of Alzheimer disease is greatest when there is no pathologic overlap between 2 dementia
syndromes, such as in frontotemporal lobar degeneration and Alzheimer disease. However �-amyloid PET alone may be insufficient in
distinguishing dementia syndromes that commonly have overlapping �-amyloid pathology, such as dementia with Lewy bodies and
vascular dementia, which represent the 2 most common dementia pathologies after Alzheimer disease. The role of molecular imaging in
Alzheimer disease clinical trials is growing rapidly, especially in an era when preventive interventions are designed to eradicate the
pathology targeted by molecular imaging agents.

ABBREVIATIONS: A� � �-amyloid; AD � Alzheimer disease; DLB � dementia with Lewy bodies; MCI � mild cognitive impairment; NIA-AA � National Institutes
of Aging and the Alzheimer’s Association; PiB � Pittsburgh compound-B

The pathologic hallmarks of Alzheimer disease (AD) are neu-

rofibrillary tangles of hyperphosphorylated � and extracellu-

lar plaques of �-amyloid (A�) proteins, which involve the brain

many years before the emergence of symptoms. Molecular imag-

ing with agents that bind to A� and � proteins may detect the

presence and progression of Alzheimer disease pathology during

the preclinical stage when the disease course may be altered by

early intervention. Imaging of the A� pathology with PET has

been used in clinical research settings for almost a decade and was

recently approved by the US Food and Drug Administration for

clinical use. Imaging of � pathology with PET has been investi-

gated less; however, its impact on understanding the pathophys-

iology of AD and on treatment planning would be significant.

Imaging of both A� and � will likely contribute independently to

early diagnosis, differential diagnosis, and the tracking of disease

progression during the preclinical, prodromal, and clinical stages

of AD.

Detecting Preclinical and Prodromal AD Pathology with
Molecular Imaging
During the past decade, discovery of A� imaging with Pittsburgh

compound-B (PiB)1 PET provided a window into the pathophys-

iology of AD in living individuals. Although postmortem studies

have long suggested a high prevalence of A� pathology with mod-

erate-to-frequent plaques reaching 47% in cognitively normal

older adults, imaging of A� pathology with PET provided an in

vivo confirmation of this observation. The prevalence of PiB pos-

itivity ranges from 20% to 34% in independent cohorts of cogni-

tively normal individuals.2-6 The variability is likely associated

with the ascertainment of participants and the cutoff used for PiB

positivity as well as the median age of the cohorts. For example, in

a population-based study of cognitively normal older adults that

included individuals with neurologic, psychiatric, or systemic ill-

nesses, a representative sample of the population, the prevalence

of PiB positivity was 31% with a global cortical PiB uptake cutoff

of �1.5, but the prevalence increased to 44% with a cutoff of

�1.4,7 which is on par with the postmortem studies in commu-

nity-based cohorts of cognitively normal elderly.8

Although A� pathology is common in cognitively normal in-

dividuals, the harmful effects of A� pathology on cognitive func-
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tion are modest.5,9-12 The risk of cognitive decline further in-

creases with the A� load.6,13,14 The high A� load on PET appears

to have subtle effects on memory, attention/executive function,

and visual-spatial processing.5,6,10,13-18 The relationship between

A� load and cognitive domain functions does not appear to fol-

low a specific functional-anatomic pattern but is localized to the

frontal, lateral temporal, and parietal lobes; posterior cingulate;

and precuneus cortex, independent of the cognitive domains that

are affected.5 Therefore the effects of A� detected on PET appear

to be global, and the APOE �4 status further modifies the associ-

ation between A� load and cognition.5,19 Although cognitively

normal carriers of the APOE �4 have

higher A� loads on PET compared with

noncarriers,3,5,20 when matched on A�

load, APOE �4 carriers tend to perform

worse on cognitive tests compared with

noncarriers (Fig 1).5 Thus, APOE �4 not

only increases the risk for A� deposition

but also influences AD pathology by

modulating the harmful effects of A� on

cognitive function through other poten-

tially synergistic mechanisms, such as en-

hancing hyperphosphorylation of the �

protein21 and reducing choline acetyl-

transferase activity.22

In 2011, the clinical diagnostic criteria

for AD were revised under the auspices

of the National Institutes of Aging and

the Alzheimer’s Association (NIA-AA).23

These new guidelines included imaging

markers in the diagnostic criteria for AD

and proposed research criteria that in-

cluded imaging evidence of AD for the di-

agnosis of preclinical AD.24 The new criteria require evidence of

A� pathology of AD for the diagnosis of preclinical AD either

through molecular imaging or CSF biomarkers. Any imaging or

biomarker evidence of AD-related neurodegeneration measured

with an AD pattern of atrophy on MR imaging or an AD pattern of

hypometabolism on [18F] fluorodeoxyglucose PET and the pres-

ence of subtle cognitive difficulties in addition to the A� pathol-

ogy increase the stage of preclinical AD from 1 to 3.

The preclinical AD research criteria was operationalized in a

population-based sample of cognitively normal older adults from

the Mayo Clinic Study of Aging.25 At fixed cut-points corre-

sponding to 90% sensitivity for diagnosing AD and the 10th per-

centile of cognitive scores of cognitively normal individuals, 43%

of the sample was classified as stage 0; 16%, stage 1 (A� PET–

positive); 12%, stage 2 (A� PET–positive and neurodegeneration-

positive on MR imaging or FDG-PET); and 3%, stage 3 (A�

PET–positive and neurodegeneration-positive on MR imaging or

FDG-PET and subtle cognitive difficulties).26 Furthermore, the

proportion of subjects who progressed to mild cognitive impair-

ment (MCI) or dementia increased with advancing stage (Fig 2).27

However, 23% of the population did not fit the preclinical AD stages

because they had normal A� PET imaging findings but abnormal

neurodegeneration biomarker study findings, which we classified as

suspected non-AD pathophysiology. The suspected non-AD patho-

physiology group is of particular interest because the individuals

progress to MCI in the short term (10% in 15 months), albeit at a rate

similar to that of subjects with stage 1 preclinical AD (11% in 15

months). The pathologic basis of positive neurodegeneration bio-

marker findings in the absence of A� pathology in this cognitively

normal group is under investigation.28

According to the new guidelines by the NIA-AA, the prodro-

mal stage of AD is characterized by mild cognitive impairment,

and research criteria further classify patients with MCI as having

MCI due to AD on the basis of biomarker evidence of AD patho-

physiology. A recent study from the Mayo Clinic Study of Aging

FIG 1. Associations between cortical PiB retention and standardized memory and global cog-
nitive domain scores according to APOE �4 status. Higher A� load is associated with greater
global cognitive impairment (partial rs � �0.18; P � .01) (A) and memory impairment (partial rs �
�0.14; P � .01) (B). However global cognitive function in APOE �4 carriers is influenced more by
the A� load compared with APOE �4 noncarriers matched by age, sex, education, and A� load
(sequential ANOVA interaction; P � .01), suggesting that APOE isoforms modulate the harmful
effects of A� on cognitive function (A). A similar trend is seen with memory function (se-
quential ANOVA interaction; P � .08). Reprinted with permission from Kantarci K, Lowe V,
Przybelski SA, et al. APOE modifies the association between Abeta load and cognition in
cognitively normal older adults. Neurology 2012;78:232– 40.5

FIG 2. Preclinical staging of Alzheimer disease and short-term pro-
gression rates. If one used the preclinical staging criteria, at fixed
cut-points corresponding to 90% sensitivity for diagnosing AD and
the 10th percentile of cognitive scores of cognitively healthy individ-
uals, stage 0 corresponds to a low A� load on PET and the absence of
imaging markers of neuronal injury (ie, normal hippocampal volumes
on MR imaging and/or the absence of an AD-like pattern of hypome-
tabolism on PET); stage 1 corresponds to a high A� load on PET and the
absence of imaging markers of neuronal injury; stage 2 corresponds to
a high A� load on PET and the presence of imaging markers of neu-
ronal injury; and stage 3 corresponds to a low A� load on PET, the
presence of imaging markers of neuronal injury, and subtle cognitive
impairment. The percentage of patients who progressed to mild cog-
nitive impairment during a median follow-up of 15 months is demon-
strated. The diagnosis of MCI was made according to the Petersen
criteria,90 blinded to the imaging biomarker data used for staging.
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and Alzheimer Disease Neuroimaging Initiative demonstrated

that the NIA-AA criteria apply to most subjects with MCI in both

the community and clinical trial settings; however, a sizeable pro-

portion of subjects had conflicting biomarkers, which need to be

investigated.29 In this population, neurodegeneration on MRI in-

creased the rate of progression to dementia in patients with MCI

due to AD and appeared to be a key factor in predicting progres-

sion relative to A� deposition alone.

Molecular imaging studies with A�-binding ligands in pre-

clinical AD indicate that approximately one-third of the popula-

tion of cognitively normal individuals and 71% of patients with

MCI in the community have high cortical A� loads. In cognitively

normal individuals, high levels of A� deposition are associated

with subtle cognitive deficits, cognitive decline, and a higher risk

of cognitive impairments in the future. However, these relation-

ships appear to be modified by the genetic markers,5,30 lifestyle

activities,31 or cognitive reserve.32

Molecular Imaging for the Differential Diagnosis of AD
The high sensitivity and specificity of PiB binding to fibrillar A�

have been demonstrated in vitro,33 in mouse models,34 and in

human tissue.35 The newer [18F] agents for A� PET have under-

gone a similar validation process36-40 and appear to show prop-

erties similar to those of PiB.41-45 The specificity of PiB to fibrillar

A� is preserved even in patients with protein deposits associated

with other neurodegenerative dementias such as �-synuclein in

dementia with Lewy bodies (DLB) (Fig 3).46-49 However, there

may be disagreements between the postmortem report and the

PET findings because of the heterogeneity of A� deposits. For

example, PiB labels both neuritic and diffuse plaques, though la-

beling of diffuse/amorphous plaques is less prominent than that

of compact/cored plaques.35,50 Patients with dementia with Lewy

bodies or Parkinson disease dementia, who typically have high

loads of diffuse plaques, may have positive A� PET scan findings

but would not be classified as having AD because of the absence of

neuritic plaques and a low Braak neurofi-

brillary tangle stage.46,47 Another exam-

ple is cerebral amyloid angiopathy. PiB

binds to vascular amyloid in patients with

cerebral amyloid angiopathy, but not all

patients with cerebral amyloid angiopa-

thy have parenchymal A� deposits for the

diagnosis of AD. Thus, while PiB is

highly specific to A�, not all A� depos-

its may be considered for the pathologic

diagnosis of AD.35,50 Furthermore,

there appears to be a threshold for de-

tection in which it may not be possible

to detect low levels of fibrillar A� depo-

sition.51 Nonetheless, the agreement

between high A� load on PET and a

pathologic diagnosis of AD in the clini-

cal setting is high and is demonstrated

in antemortem imaging and postmor-

tem confirmation studies and case se-

ries.52-54 The sensitivity and specificity

of amyloid PET tracers to the different

fibrillar A� deposits need further investigation.

One of the key applications of A� PET imaging in clinical

practice is in the differential diagnosis of AD. The accuracy of A�

PET in distinguishing AD and frontotemporal lobar degeneration

is quite high,55 with an overall classification accuracy of 97% in

cases with histopathologic confirmation.56 On the other hand, the

2 most common dementia pathologies after AD are vascular dis-

ease and Lewy body pathologies, which commonly are present

with additional AD pathology. In these cases, the presence of an

intermediate-to-high A� load may be insufficient to determine

the predominant pathology contributing to the dementia syn-

drome. In keeping with the postmortem data, 25%–35% of pa-

tients with vascular dementia57,58 and 60%– 80% of patients with

DLB46,54,59-62 have high A� loads on PET. Thus high levels of

amyloid load may be insufficient in distinguishing these dementia

syndromes from AD, and a multitechnique imaging approach

may be useful. We have shown that FDG-PET, A� PET, and struc-

tural MR imaging are complementary in distinguishing patients

with AD and DLB54 and may be useful in predicting the presence

of AD pathology in patients with DLB (Fig 4).63 Molecular imag-

ing of the impaired nigrostriatal dopaminergic transmission in

DLB with 2�-carbomethoxy-3�-(4-iodophenyl)-N-(3-fluoro-

propyl) nortropane with SPECT64 or loss of monoaminergic ter-

minal integrity with vesicular monoamine transporter type 2 ra-

dioligands may further detect the Lewy body–related pathologic

features in cases with mixed dementia and may be complemen-

tary to A� PET.65

The added diagnostic value of A� PET imaging in the differ-

ential diagnosis of dementia across different clinical settings has

become a topic of significant interest with the availability of [18F]

agents for A� imaging.66-70 Although the added value of A� PET

to clinical decision-making has not been established,66-69 how A�

load is measured on PET scans (ie, visual evaluation versus vari-

ous quantitative techniques) appears to make a difference in the

value of this diagnostic technique in the clinical setting.69

FIG 3. Correlations of cortical PiB retention and A� (A) and Lewy body (B) densities in individual brain
regions of a case with dementia with Lewy bodies. There was a strong correlation between PiB
retention and A� attenuation in the 17 ROIs that were analyzed on pathologic examination by using
the Spearman rank-order correlation (r � 0.899; P � .0001). There was no correlation between Lewy
body attenuation and PiB retention (r � 0.13; P � .66). MH indicates middle hippocampus; PH,
posterior hippocampus; Th, thalamus; Cd, caudate; Ad, amygdala; CC, calcarine cortex; Pt, putamen;
STG, superior temporal gyrus; MTG, middle temporal gyrus; IP, inferior parietal; PG, precentral gyrus;
PCG, posterior cingulate gyrus; MFG, middle frontal gyrus; Mf, midfrontal; ACG, anterior cingulate gyrus;
Pc, precuneus; SPL, superior parietal lobule. Reprinted from Neurobiology of Aging, Vol. 33(5), Kantarci K,
Yang C, Schneider JA, et al. Antemortem amyloid imaging and beta-amyloid pathology in a case with
dementia with Lewy bodies. p. 878–885, 2012, with permission from Elsevier.47
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Longitudinal Molecular Imaging for Tracking AD
Pathology
Longitudinal imaging of the A� load on PET provides evidence of

the progression of A� deposition in the preclinical-to-clinical AD

spectrum. The hypothetic model proposed by Jack et al71 indi-

cates that A� deposition detected with molecular imaging and

CSF biomarkers follows an accelerated course early in the disease

process during the preclinical and MCI stages but slows down

during the Alzheimer disease stage and reaches a plateau at very

high levels. The findings of many longitudinal biomarker studies

on A� deposition agree with this model.72-81 Cognitively normal

individuals who progress to MCI and patients with MCI who

progress to AD appear to have the highest rates of A� deposi-

tion,79 correlating with cognitive decline early in the disease

course.76,77 Furthermore, a higher baseline A� load78,80 and the

presence of APOE �479 are associated with higher rates of A�

deposition. However, the association between higher baseline A�

load measured with the standardized uptake value ratio and a

higher rate of A� deposition appear to

dissipate at very high levels (roughly 2.0

standardized uptake value ratio). After

this threshold, the relationship becomes

an inverted U, gradually declining and

reaching zero at the highest baseline A�

load levels (2.7 standardized uptake value

ratio). The time estimated to start with

positive findings on a PiB scan (1.5 stan-

dardized uptake value ratio) to the point

of plateau is approximately 15 years, cor-

responding to a large therapeutic window

for clinical trials.73

Molecular Imaging in Clinical Trials
for AD
In autosomal dominant AD, the age of

symptom onset can be predicted. It is es-

timated that increased A� deposition pre-

cedes clinical symptoms for approxi-

mately 15 years, providing a wide window

for preventive therapies.82,83 The role of

molecular imaging in clinical trials target-

ing the pathology captured with the mo-

lecular imaging agent can be 2-fold: 1) to

determine who has the target pathology

and enrichment of trials with this infor-

mation; and 2) to determine whether a

treatment is modifying the target pathol-

ogy. Both of these applications of A�

imaging are being used in current clinical

trials of amyloid-modifying therapies

for both treatment and prevention of

AD.84,85 Findings from the bapineu-

zumab phase 2 double-blind placebo-

controlled, ascending-dose study indicate

that lowering of cortical fibrillar A� with

bapineuzumab can be detected with PiB

PET.86 However, even though there were

reductions in the A� load, the bapineu-

zumab trials were halted due to lack of improvement in clinical

and functional outcomes in patients with AD dementia. Similarly,

it is expected that imaging of the � pathology of AD87,88 especially

with agents specific to the � pathology that are currently being

developed and tested,89 will open avenues for development of new

targets for prevention.
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