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reduced performance.10 However, the addition of complex 360°

shapes improved the angiographic outcomes for both Matrix and

GDC coils—making the 2 more comparable.

In a detailed analysis, the actual benefit of Matrix surface mod-

ification was in the histopathologic results, which showed that

Matrix-treated aneurysms showed improved endothelization,

manifest as an absence of endothelialized clefts at the aneurysm

neck (which are prevalent in GDC-treated aneurysms).10 Endo-

thelialized clefts have been proposed as the etiology for late angio-

graphic recurrences.5 Late recurrences have been reported at 3

years in up to 15% of aneurysms that had been completely oc-

cluded acutely and in short-term follow-up.11 While the MAPS

trial showed that in the short term, Matrix was essentially equiv-

alent to platinum coils, the real benefits of surface modification

may be manifest in the results at late (3- and 5-year) follow-up.

Furthermore, in subgroup analysis, when aneurysms were ad-

equately occluded (Raymond-Roy scale 1 or 2), Matrix had sig-

nificantly better outcomes with only 2.7% requiring retreatment

compared with 9.6% (P � .01) with platinum coils.12 However,

aneurysms with residual flow (Raymond-Roy scale 3) demon-

strated poor outcomes in both arms—Matrix (24.2%) and plati-

num (16.1%) (P � .17). These observations coincide well with the

known polyglycolic/polylactic acid (PGLA) characteristics, the

polymer coating on Matrix coils. When exposed to high-flow

states, PGLA experiences an acceleration of breakdown, nullifying

any potential gain due to the bioactive component of the coil.

These results suggest that the short-term issues with Matrix were

more likely related to the adequacy of mechanical occlusion

rather than the efficacy of the bioactive coating.

We believe that collaborative doctor/industry relationships

are an important synergistic dynamic that is essential for contin-

ued technologic advancement in our specialty. It is critical that

high standards be set for new technologies, particularly for those

designed to treat diseases with well-established safe therapies.

Regimented postmarket data collection and evaluation should oc-

cur with all new technologies, ensuring that marketing claims are

not confused with scientific evidence.13 However, to mix con-

cerns with technology marketing or limitations in the implemen-

tation of a technology with a perception of failure of the funda-

mental scientific premise would be a mistake.

In our opinion, the concept of platinum coil surface modifi-

cation to stabilize or increase the rate of thrombus organization is

still valid and continues to have promise for enhancing long-term

aneurysm occlusion stability. Time will tell whether this benefit

will be reflected in the late-term MAPS data; the current data do

not negate the fundamental concepts of bioactive coatings. As

such, continued innovation toward the development of better de-

livery mechanisms or more durable bioactive responses is entirely

reasonable.
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EDITORIAL

MR-Guided, Focused Ultrasound:
Applications to Essential Tremor and
Other Neurologic Conditions
G. Suffredini and L.M. Levy

In this issue of the American Journal of Neuroradiology, a novel

approach by means of MR-guided, focused sonography surgery

(MRgFUS) is used to treat essential tremor.1 The results indicate

that clinical improvement is significantly related to total lesion

size. No relationship was found between the imaging characteris-

tics of the lesion and sonication number, power, or maximal tem-

perature. Although the authors describe an important advance in

the use of this procedure, the study also raises a number of ques-

tions regarding the broad application of this technique to various

neurologic conditions.

The use of focused sonography to treat brain disorders has

evolved over the past 70 years. In the 1950s, Francis and William

Fry developed a system of converging sonography beams to pro-
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duce focal ablations in the brains of pigs and cats when applied

through a craniotomy acoustic window.2 The major limitation of

this technology was the inability to focus sufficient sonography

energy through the bony skull because of attenuation of acoustic

energy. By the 1970s, their lab described the acoustic properties of

the human skull3 and successfully achieved trans-skull transmis-

sion of an intensely focused ultrasonic beam.4

During the past decade, sonography therapy has emerged as a

minimally invasive therapy for movement disorders, neuropathic

pain, and malignancies. In combination with MR imaging and

MR thermometry, MRgFUS can produce focused ablations in the

brain by thermal and nonthermal effects with millimeter accu-

racy.5 Thermal (ablative) effects of MRgFUS occur when tissue is

heated above 57– 60°C, resulting in coagulative necrosis and tis-

sue destruction. The degree of tissue necrosis is related to the

focused sonography beam and can be monitored in real time with

MR thermometry. Nonthermal (nonablative) effects of focused

sonography result from acoustically induced interactions of mi-

croscopic gas bubbles or “microbubbles” with the surrounding

vascular endothelium, a process termed “cavitation.” These inter-

actions cause disruption of endothelial cell tight junctions and

result in disruption of the blood-brain barrier. Because the sonog-

raphy intensity needed to produce microbubble-induced cavita-

tion is several orders of magnitude lower than the intensity

needed for thermal ablation, this disruption of the blood-brain

barrier is only temporary and has been shown to be safe and ef-

fective in an animal model.6

Both thermal and nonthermal mechanisms of MRgFUS can

provide novel therapeutic opportunities for the treatment of

brain disorders. Focused sonography is ideal for ablation therapy

because it can target deep brain structures including the thalamus,

subthalamus, and pallidum regions. However, it is limited in

treatment of lesions near the calvaria because of the attenuation

effects of the skull, which are more pronounced at locations

nearer to bone. Ablative therapies have been investigated as suit-

able minimally invasive alternatives for glioblastoma,7 neuro-

pathic pain,8 and essential tremor.9,10 Investigations for the treat-

ment of Parkinson disease are currently underway.11

The short-lived disruption of the blood-brain barrier by

MRgFUS provides a means to target delivery of drugs, antibodies,

and stem cells to brain tissue.12-14 Sonography has also been used

to enhance revascularization in a process termed “sonothrom-

bolysis.” A recent meta-analysis of the use of sonography in isch-

emic stroke showed the therapy to be safe and effective.15

MRgFUS enables targeted delivery of sonography to the clot loca-

tion and has the potential to improve the treatment of acute isch-

emic stroke. MR imaging can identify clot location and serve as a

treatment map for immediate focused sonography therapy. Fo-

cused sonography sonothrombolysis has also been proposed for

the treatment of intracerebral hemorrhage.16 In this setting, sono-

thrombolysis is used to liquefy the clotted blood within the intra-

cerebral hemorrhage with consequent minimally invasive MR im-

aging– guided drainage of the liquefied clot.

The effectiveness and utility of sonography therapy can be

augmented with nanotechnology. Thermal ablation is being eval-

uated by use of multifunctional drug delivery systems capable of

triggering local hyperthermia in the presence of low-frequency

sonography.17 These systems provide a unique synergistic combi-

nation of chemotherapy, thermal therapy, and real-time imaging

and are being investigated for the treatment of CNS malignancies.

The present study by Wintermark et al1 demonstrates the impor-

tance of lesion size in achieving symptom relief. Although total

lesion size was significantly correlated to clinical improvement,

the value of the imaging findings remains unclear. The time-de-

pendent imaging characteristics of MRgFUS-induced brain le-

sions on T2-weighted imaging consists of 3 concentric zones:

zones I and II appear as a result of coagulation and necrosis, and

zone III appears as the most peripheral of the concentric zones

and represents transient edema.18 A larger zone III area is corre-

lated with clinical improvement, but some of this improvement is

lost as the edema resolves. Of interest, 2 patients with limited

clinical improvement had imaging characteristics that were not

very different from those with clinical improvement. This raises

the concern of difficulties associated with accurately locating

therapeutic targets. The ventrointermediate nuclei (Vim) are the

thalamic relays of the cerebellothalamocortical tract and are the

principal targets of MRgFUS in the treatment of essential tremor.

Two methods may be used to locate the Vim: image-based coor-

dinate targeting (direct method) and atlas-based targeting (indi-

rect method). The latter approach is subject to potential inaccu-

rate localization of the anterior and posterior commissures, an

error that can be �5 mm. Direct identification is considered to be

more accurate in identifying Vim and may be achieved with frac-

tional anisotropy and color-coded vector maps.19 Lesion identi-

fication in the current study was determined by atlas coordinates

and clinical parameters evaluated in real time with sublesional

sonication. In the 2 patients with limited therapeutic benefit, the

MRgFUS was not repositioned, and the patients did not show

sensory symptoms during treatment. Future studies may incor-

porate direct methods of Vim location during sonication to con-

firm target identification. Diffusion tractography may also be use-

ful in evaluating the integrity of these tracts over time and in

correlating their integrity with clinical symptoms. This approach

could potentially help to identify valuable imaging information

and provide useful targets for repeat therapy. Last, in the current

study, total lesion size appeared to be unrelated to sonication

number, power, or maximal temperature, presumably because of

the small effect size and underpowered study. Determining the

optimal use of these variables may improve the clinical utility of

MRgFUS.
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EDITORIAL

Simple MRI Metrics Contribute to
Optimal Care of the Patient with
Multiple Sclerosis
J.H. Simon, R.A. Bermel, and R.A. Rudick

MR imaging has been a critical element in multiple sclerosis

care because it has been the basis, along with clinical mea-

sures, for testing treatment efficacy. MR imaging serves as a pri-

mary outcome measure in phase II and a secondary outcome

measure in phase III clinical trials in MS.1 There are now 10 ap-

proved MS disease-modifying drugs, all showing measureable im-

pact in population studies on inflammatory disease as indicated

by new T2 hyperintense and/or gadolinium-enhancing lesions on

MR imaging. MR imaging initially impacted the field as an im-

portant component of diagnostic criteria,2 in part because MR

imaging is much more sensitive to early MS than are clinical fea-

tures. For similar reasons, clinicians have embraced the practice of

monitoring subclinical MR imaging activity for treatment deci-

sions, though formal criteria for an actionable response to MR

imaging activity in an individual patient have been limited (On-

line Table 1). MR imaging monitoring is also critical for detecting

complications of therapy—for example, infection (progressive

multifocal leukoencephalopathy) or inflammation (immune re-

constitution inflammatory syndrome).3

Several recent initiatives by the MS community have ad-

dressed the concept of individualized, more tailored, and

sometimes more aggressive early treatment. Treatment escala-

tion has only recently become feasible with the introduction of

new, potentially stronger MS treatments based on differing

mechanisms and molecular targets.4 As a result, MR imaging

activity will be increasingly used in clinical practice to deter-

mine whether patients are responding to treatment or may

benefit from a change in treatment or escalation to higher-risk

therapy (On-line Table 1). For example, the Canadian MS

Working Group guidelines were updated in 2013,5 on the basis

of combinations of relapse, disability, and MR imaging scores,

for recommendations classified as low, medium, or high con-

cern. The Rio score, developed in Barcelona, was modified

recently on the basis of a validation study to include only MR

imaging activity and relapse indicators.6 Enhancing lesions,

followed by relapses and new T2 lesions during the initial 2

years, were the best predictors of disability 15 years later in

treated (distinct from placebo) patients in the interferon (IFN)

�-1a trial,7 suggesting that persistent inflammatory disease ac-

tivity in patients on IFN reflected nonresponse to therapy. An

analysis by Dobson et al8 from 11 studies with IFN-� treatment

found that those who develop new MR imaging lesions on

IFN-� within 2 years of starting therapy are at significantly

higher risk of future relapses and/or disability worsening and

that these patients can be identified after just 6 –12 months of

treatment.

The simple MR imaging measures of focal T2 hyperintense

and enhancing lesions seem to contribute strongly to relapse and

disability outcomes and contribute significantly to brain atrophy,

a surrogate of disability. This association is highlighted in a recent

meta-analysis by Sormani et al,9 based on �13,500 patients with

relapsing MS in 13 clinical trials. The correlation coefficients (R2)

with downstream disability for new/enlarging T2 lesions and

brain atrophy were 0.61 and 0.48, respectively, with both mea-

sures retained in a final model with a combined R2 of 0.75,

strongly supporting the use of these MR imaging outcomes as

clinical surrogate measures when applied in an appropriate clin-

ical-/treatment-specific context.9

It is likely that in the future, advanced quantitative and func-

tional measures by MR imaging will assume far greater impor-

Indicates article with supplemental on-line tables.
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