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REVIEWARTICLE

GABA-Based Evaluation of Neurologic Conditions:
MR Spectroscopy

L.M. Levy and A.J. Degnan

ABSTRACT

SUMMARY: GABA serves as a major neurotransmitter of the brain and functions mainly to inhibit neural excitatory activity. Disruption of
the GABAergic processes appears to occur in various neurologic and psychiatric conditions, including epilepsy, mood disorders, motor
disorders such as focal dystonia and stiff-person syndrome, sleep disorders, neuroplasticity, and drug and alcohol dependence. These
concentration differences may be ascertained by using MR spectroscopy to provide information on the concentration of different
metabolites. This review briefly discusses advances in MR spectroscopy methods and explores the application of this technique to detect
changes in GABA due to disease processes and medication-induced effects.

ABBREVIATIONS: AED� antiepileptic drug; GABA� �-aminobutyric acid; GABAAR� �-amino butyric acid A receptor; GABABR� �-amino butyric acid B receptor;
GABA-T � GABA transaminase; GAD � glutamic acid decarboxylase; J-PRESS � a combined 2D point-resolved spectroscopy sequence; SSRI � selective serotonin
reuptake inhibitor

The importance of GABA first emerged from experimental

work in the 1950s by Eugene Roberts, identified from extracts

of mouse neuroblastoma; the primary inhibitory neurotransmit-

ter activity of GABA was postulated only years after its discov-

ery.1,2 GABA is the major inhibitory neurotransmitter within the

brain and accounts for almost half of synaptic activity.3

GABA arises from glutamic acid by GAD and is broken down

by GABA-T. There are 2 major types of GABA receptors:

GABAAR, which has a predominant inhibitory effect in the cortex,

and GABABR, which inhibits excitatory potentials and enables

long-term potentiation in the hippocampal and mesolimbic re-

gions.4 Alterations in brain GABA concentrations and in GABAe-

rgic pathways are implicated in the pathophysiology of a number

of neurologic disorders to be discussed in this review.

PRINCIPLES OF GABA MEASUREMENT
ONMR SPECTROSCOPY
Conventional MR spectroscopy techniques can presently assess,

with a good degree of reliability, only a small number of metabo-

lites in the human brain. The primary information from the MR

spectra has been generally limited to the levels of the few largest

peaks: Cr, Cho, NAA, and lactate. GABA appears much lower in

concentration, with an average concentration of 1 mmol/L versus

5–10 mmol/L.5 One of the earliest demonstrated detections of

GABA in vivo by using MR spectroscopy occurred in the 1990s by

Rothman et al.6 More recently, additional various technical mod-

ifications have been introduced to recognize metabolites such as

GABA, glutamine, glutamate, glucose, and others.7 These at-

tempts have not always been successful due to difficulties in ex-

tracting this type of information from spectra with overlapping

resonant peaks.

Another limitation of current MR spectroscopy methods con-

cerns the difficulty of comparing levels of GABA among subjects

or in disease states. One way in which researchers have addressed

this concern is to express the GABA concentration relative to an-

other metabolite such as Cr. Other problems inherent in MR

spectroscopy are the imprecise nature of some ROIs selected to

measure metabolites. These ROIs may include differing types of

brain matter inadvertently through partial volume effects; gray

matter contains a much greater concentration of GABA than

white matter.8 Moreover, regardless of the size of the ROI, MR

spectroscopy cannot indicate whether the concentration of a me-

tabolite measured lies intracellularly or extracellularly; therefore,

decreased GABA, for instance, might result from decreased num-

bers of GABAergic neurons, smaller neurons, or decreased GABA

extracellularly. GABA concentrations also may not reflect neu-

rotransmitter flux or the number and activity of GABA receptors.

The actual significance of each of these limitations is uncertain at

present.
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A comparison of conventional versus neurotransmitter

(GABA) metabolite characteristics for MR spectroscopy is shown

in the Table. In conventional spectroscopy, the usual metabolites,

such as NAA, Cr, and Cho, usually have much greater signal in-

tensity than metabolites such as GABA and other neurotransmit-

ters and are much easier to measure. Also, they tend to vary much

less than neurotransmitters temporally and across brain regions.

Most important, neurotransmitters are more closely related to

brain function, whereas the usual metabolites are more often as-

sociated with structural parameters. This becomes important

in evaluating various neurologic disorders and the effect of

therapies.

Spectral Editing
Spectral editing sequences have been used to select out J-coupled

metabolites from each other; however, only 1 metabolite at a time

can be individually selected. A frequency-selective radio-fre-

quency pulse can be applied to generate a spectrum that only

depicts signals affected by the selective pulse.9,10 Double-quan-

tum filtered and other methods may afford greater editing

but may be subject to signal-intensity loss11; there are also other

spectral editing methods that are beyond the scope of this

review.12-18

2D MR Spectroscopy
2D proton MR spectroscopy offers the possibility of obtaining all

the major cerebral metabolites in vivo in a localized acquisi-

tion.19-21 Recent techniques to distinguish GABA from other

molecules can use spectral editing and 2D uncoupling such as

MEGA-PRESS (J-difference editing point resolved magnetic res-

onance spectroscopy), J-PRESS, and inner volume saturation as

exemplified in Fig. 1.22,23

CLINICAL USES OF GABA MR SPECTROSCOPY
Clinically, the ability to obtain cerebral metabolic information

provides clinicians with a powerful tool to evaluate or serially

follow-up diseases. Present measurements of certain cerebral me-

tabolites, such as GABA, have previously been generally limited to

measurements of concentration levels in the blood and CSF, but

these are only an indirect reflection of brain levels. Furthermore,

they cannot be localized to a particular anatomic region of the

brain to assess localized metabolism or regional pathology. Direct

MR spectroscopy brain measurements circumvent many of these

problems and easily permit serial temporal quantitative assess-

ment of disease progression and drug-mediated effects.

INVESTIGATION OF GABA PHYSIOLOGY BY USING MR
SPECTROSCOPY
Recent evidence supports the role of GABA in serving as a gateway

for cortical activity. GABA reduction appears to allow increased

excitatory activity and vascular reactivity.24-26

GABA may also allow synaptic plasticity and cortical reorga-

nization. In a study of deafferentation, Levy et al27 demonstrated

rapid decreased GABA concentrations following initiation of a

nerve block. This same concept of GABA reduction as an opening

of a gate to allow for synaptogenesis is reinforced by experiments

of motor learning tasks.

CONDITIONS INVOLVING GABA
Epilepsy
GABA dysfunction has long been postulated as a contributor to

seizure activity—reduced GABA would be expected to allow un-

bridled excitatory neural activity. In line with this theory, antiepi-

leptic medications generally have an effect on increasing GABAe-

rgic activity and decreasing CSF levels of GABA.28 Moreover,

antibodies to GAD have been detected in many groups of patients

with seizure disorders; this autoimmune phenomenon would be

expected to curtail GABA synthesis.29,30 In patients with anti-

GAD-antibody-positive epilepsy, compared with healthy con-

trols, GABA levels are lower within the primary sensorimotor

cortex.31 An early study of GABA MR spectroscopy demonstrated

that patients with more recent seizure recurrence had much lower

concentrations than did those who had been symptom-free lon-

ger.32 GABA is also reduced in the setting of juvenile myoclonic

epilepsy and complex partial seizures.33,34 Moreover, poorer sei-

zure control in complex partial seizure disorder appears to corre-

late with decreased GABA levels.33 These findings support the

notion of decreased GABAergic function and the occurrence of

epilepsy.

On the other hand, others have failed to find decreased GABA

concentrations, even following resection of the abnormal seizure

focus35 or in idiopathic generalized epilepsy while finding eleva-

tions in glutamate and glutamine.36,37 An abnormal cortex in

seizure disorders may demonstrate marked GABA elevation, such

as in cortical tubers.38 It is clear from these divergent reports that

there may be regional variance within different regions of the

cortex in different seizure disorders that are still poorly character-

ized. Ex vivo spectroscopy experiments also contradict these find-

ings, with the detection of increased levels of GABA on MR spec-

troscopy of brain biopsies from patients with intractable

epilepsy.39-41

Motor Disorders
Stiff-person syndrome consists of muscle rigidity and episodic

muscle spasms.42 As in the case of epilepsy, autoantibodies to the

GAD enzyme (GAD-65) have been detected.43-45 Reduced CSF

GABA levels suggest that decreased inhibitory activity leads to

excessive cortical-directed muscle excitation.44 On MR spectros-

copy, Levy et al42 reported prominent decreases in GABA in the

brains of these patients.

Similarly, decreased inhibition by GABA may result in focal

dystonia, such as in the case of writer’s cramp.46 This decrease in

Comparison of conventional versus neurotransmitter (GABA)
metabolite characteristics for MRS

Metabolite
Characteristics

Conventional
Metabolites
(NAA, Cr, Cho)

Neurotransmitters
(GABA)

Magnitude Large Small
Function Structural Physiologic
Spatial Homogeneous Regional
Temporal Constant Dynamic
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the amount of GABA is thought to encourage plasticity and per-

haps lead to excessive plasticity and functional impairment.47

Mood and Anxiety Disorders
Mood disorders also appear to share the phenomenon of reduced

GABA.48 Patients with unmedicated major depressive disorder

have demonstrably lower GABA levels within the dorsomedial/

dorsal anterolateral prefrontal cortex49 and occipital cortex.50

GABAergic decreases have been noted in depressed subjects in

both the occipital and anterior cingulate cortex.51 Bipolar patients

would be expected to share these brain chemistry changes, espe-

cially with demonstrated histologic loss of GABAergic neurons

and decreased plasma GABA levels.52,53

Angiogenesis may involve GABAergic dysfunction, allowing

increased neural excitability as suggested by the effectiveness of

benzodiazepines as anxiolytics. Patients with panic disorder pos-

sess significantly lower GABA levels than controls.54 Those pa-

tients on chronic anxiolytics also had decreased GABA concentra-

tions in the occipital cortex and showed blunted responses to

benzodiazepines, suggesting impaired GAD function.55 On the

other hand, patients with social anxiety disorder, while having

significantly elevated glutamate and glu-

tamine, showed no differences in GABA

compared with healthy controls.56

In an elegant threat-of-shock experi-

ment by using MR spectroscopy, Hasler et

al57 showed that healthy individuals dem-

onstrate an average 18% reduction in pre-

frontal GABA from this acute stress sce-

nario. Because anxiety is closely related to

perceived threat, this study suggests that

GABA mediates fear–a decrease in GABA

might allow priming of a motor response

to a feared threat.

Schizophrenia
It is hypothesized that the cognitive im-

pairments observed in schizophrenia may

be related to decreased GABA levels re-

sulting from pancortical decreased GAD

transcription.58 A recent MR spectros-

copy study found that GABA is decreased

within the visual cortex in patients with

schizophrenia, reinforcing the idea of

GABA disruption as the mechanism of

loss of cognitive inhibition.59 Tayoshi et

al60 found more GABA in those patients

taking typical antipsychotics versus atyp-

ical antipsychotics. Thus, treatment ef-

fects may hamper the ability to detect

GABA reductions in patients with schizo-

phrenia on medication.

Alcoholism and Drug Addiction
The importance of GABA in alcoholism is

evident in the clinical utility of benzodi-

azepines in mitigating seizure activity in

the setting of acute withdrawal.61 Simi-

larly, baclofen (a GABABR agonist) appears to reduce craving

and consumption of alcohol through a GABA-related

mechanism.62Alcohol appears to facilitate GABAergic activity at

the GABAAR; therefore, it is suggested that GABA levels in

chronic alcohol use would be lower.61,63 MR spectroscopy of al-

cohol-dependent subjects supports the concept of alcohol-in-

duced GABAergic modification. GABA plus homocarnosine was

significantly lower in patients with recently treated alcoholic he-

patic encephalopathy and those recently detoxified compared

with healthy controls.64 In another study, decreased levels of

GABA in alcohol-dependent individuals versus healthy controls

were not found65; this discrepancy may be related to the time

course of alcohol withdrawal. In fact, GABA levels were found to

be normal shortly after withdrawal and then decreased after a

month of sobriety.66

Cocaine users share similar findings as those seen in alcohol-

ics: Cerebral GABA levels were significantly reduced in several

studies when users were compared with controls.67,68 Reductions

within the prefrontal cortex explain disinhibition and impaired

impulse control seen with cocaine use.

FIG 1. Example of 2D J-PRESS spectroscopy. A, 2D spectrum of a phantom containing NAA and
Cr displayed in 3D, with the vertical axis being signal intensity; the horizontal axis, the chemical
shift; and the oblique axis, the “decoupling” or J-dimension. Introduction of this second dimen-
sion provides spectra of greater resolution, as if amountain rangewas visualized from above (2D
spectrum) rather than just from its skyline (conventional 1D spectrum). The color bar denotes
signal intensity. B, 2D spectrum of GABA shows the characteristic set of 3 vertical rows com-
patiblewith its spectroscopic structure of 2 triplets and 1multiplet. A large central peak ofGABA
triplet (�-Carbon Hydrogen [CH]) is shown. C, Projection of the 2D spectrum in A maps the
individual peaks onto a contour plot. D, 2D spectroscopy contour plot of the human sensori-
motor cortex. The horizontal axis represents chemical shift; the vertical axis represents the
J-axis. The decoupled peaks of themetabolites can then be identified from their known assigned
resonances. The 1D profile along the J� 0 axis is plotted in yellow. Large peaks occurring along
the J0 axis (J0 subspectrum) at the characteristic chemical shifts of the major peaks of NAA (CH3
at 2.02 ppm), Cr (CH3 at 3.04 ppm), and Cho (CH3 at 3.2 ppm) aremarked. The central peak of the
GABA-CH2 resonance can be seen on J0 subspectrum (2.31 ppm), with side peaks corresponding
to the triplet structure (�7.3 Hz).
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Sleep Disorders
GABA has been implicated in sleep disorders, with benzodiaz-

epines having demonstrable effectiveness in treating insomnia.

This theory is backed by the finding of substantially reduced

global GABA levels in chronic primary insomnia.69 Kakeda et al70

noted a substantial reduction in the GABA/Cr ratio in the frontal

lobes of alternate-shift workers by using MR spectroscopy.

Conversely, young patients with narcolepsy with established

human leukocyte antigen mutations manifest a completely differ-

ent appearance on MR spectroscopy, with increases in GABA.71

This finding is unsurprising because, in narcolepsy, hypocretin is

deficient; hypocretin normally has a negative feedback effect on

GABA anabolism. Thus, the elevation of GABA within the medial

prefrontal cortex fits into the pathophysiology of narcolepsy.

Migraines
Bigal et al72 were the first to look at GABA concentrations in mi-

graines by using MR spectroscopy. There was no difference between

those with migraines and controls on the basis of GABA values.72

Particular to this condition and the concomitant association with

neurovascular alterations, GABA changes may simply reflect the ef-

fects of altered cerebral blood flow during a migraine attack.

Autism Spectrum Disorders
GABAA and GABAB receptor downregulation has been proposed

as a potential pathophysiologic mechanism in autism.73,74

Harada et al75 recently reported the first MR spectroscopy evalu-

ation of GABA in children with autism, which demonstrated sig-

nificantly reduced GABA concentration in the frontal lobes and in

the GABA/Glu ratio, suggesting that GABAergic activity declines

while glutamatergic activity is excessive. These reductions in

GABA could explain the cognitive impairment and increased sei-

zure risk inherent in autism.

Olfactory and Gustatory Disorders
Like the other conditions described herein, the empiric effective-

ness of GABA-active medications suggested the role of GABA

downregulation in the case of phantogeusia and phantosmia.76 In

a study of patients with either condition, GABA levels were de-

creased within the cingulate, right and left insula, and left

amygdala.77 GABA agonist therapy (haloperidol or thioridazine)

significantly increased these depressed GABA levels.77 From this

clinical research, cortical hyperactivity potentially manifests itself

as spurious perceived smells and/or tastes.

TREATMENT EFFECTS ON GABA CONCENTRATION
MR spectroscopy is emerging as a useful instrument to improve

our understanding of the pharmacology and development of

medications.65 As a noninvasive repeatable study, MR spectros-

copy could be easily used to longitudinally follow the changes in

brain chemistry. Unexpected changes in brain metabolism could

serve as indicators of potential neurologic complications before

actual clinical findings appear.

GABA Agonists
Several medications are known to act either directly on GABA

receptors or the related benzodiazepine receptors. Zolpidem,

used in the treatment of insomnia and acting on the GABAAR,

decreased GABA levels in the thalamus but not the anterior cin-

gulate cortex; this effect correlated with subjective nausea and

dizziness.78 Clonazepam also reduced GABA levels, particularly

within the occipital cortex.55

ANTI-EPILEPTIC DRUGS
Management of Seizure Disorders Relies on the
Preventive Function of AEDs.
Vigabatrin acts by inhibiting GABA-T irreversibly, thereby in-

creasing the amount of GABA available. Early studies showed a

significant GABA increase, beginning within 2 hours79,80 and ver-

ified by others.81,82 Increased CSF and MR spectroscopy–mea-

sured GABA by vigabatrin are associated with improved seizure

control83; those with lower baseline levels and steeper increases

appear to respond better clinically.84

Topiramate is an AED with an imprecise mechanism of action

that is thought to enhance GABAA activity. Topiramate can in-

crease MR spectroscopy�detected GABA by 72% or 0.9 mmol/L

in as little as 3– 4 hours as well as its precursor, glutamine.85-88

Lamotrigine, of the newer generation of AEDs, has proved

very useful in other conditions such as bipolar disorder. Despite

its efficacy in seizure prevention,89 MR spectroscopy showed no

GABA effect for lamotrigine acutely but revealed significant

GABA increases of one-quarter at 1 month.90

Gabapentin is, instead, thought to act via voltage-gated cal-

cium channels. MR spectroscopy illustrates the GABAergic activ-

ity of gabapentin, with acute and chronic elevations in GABA90

and a median concentration increase of 1.3 mmol/L within the

occipital cortex within 1 hour of administration.91 Levetiracetam

is another AED with a tenuous mechanism of action that is

thought to bind synaptic vesicles. In patients with epilepsy who

responded to levetiracetam, GABA/Cr increased; this change sug-

gests a GABAergic component that facilitates seizure prevention.5

Antidepressants
SSRIs have become the mainstay of the management of mood

disorders and related conditions. Given the reduction in GABA

seen in depressed patients and the clinical efficacy of SSRIs, it is

unsurprising that recent studies suggest that SSRIs increase

GABA. A pilot study of several SSRIs showed significantly in-

creased occipital cortex GABA (34%) after an average of 2 months

of treatment.92 Citalopram administration yields a 35% relative

increase in GABA in the occipital cortex of healthy volunteers,

confirming these findings and suggesting a pro-GABAergic effect

of SSRIs.93

Nonpharmacologic Therapy
Because other treatment options may have an effect on the brain

chemistry of patients, it is important to systematically assess po-

tential changes in GABA with alternative therapies. Yoga therapy

for healthy volunteers yielded demonstrable increases in thalamic

GABA on MR spectroscopy over a walking group,94 with a signif-

icant decrease in anxiety.94 On the other hand, GABA MR spec-

troscopy may not detect changes with some therapies: Cognitive

behavioral therapy was of no benefit in increasing GABA levels in

individuals with depression in 1 study.95
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FUTURE DIRECTIONS
MR spectroscopy has already made demonstrable advances in the

noninvasive detection of differences in GABA concentrations in a

variety of conditions from autism to epilepsy to stiff-person syn-

drome. In addition, MR spectroscopy informs clinicians of the

effects of medications on the chemical composition of the brain.

The future of MR spectroscopy looks promising with the advent

of advanced techniques that can better isolate individual com-

pounds. Many limitations still exist, however: MR spectroscopy

studies are lengthy and uncomfortable for patients, and MR spec-

troscopy of GABA requires a high degree of technical sophistica-

tion. Most pressingly, pervasive gaps in our understanding of

neurochemical changes, particularly affecting GABA, persist. An-

other limitation in the field of MR spectroscopy results from the

static approach to metabolic disruptions in the brain. With the

use of other MR spectra such as carbon 13 MR spectroscopy, it is

plausible that metabolite pool kinetics could be visualized, though

several barriers to this approach invented in the 1990s still exist as

discussed by others.96,97 Future examinations by using MR spec-

troscopy could take advantage of these novel techniques to exam-

ine disruptions of brain chemistry in disease conditions and ana-

lyze the effectiveness and action of pharmaceuticals.
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