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ORIGINAL RESEARCH
BRAIN

Automatic Lesion Incidence Estimation and Detection in
Multiple Sclerosis UsingMultisequence Longitudinal MRI

E.M. Sweeney, R.T. Shinohara, C.D. Shea, D.S. Reich, and C.M. Crainiceanu

ABSTRACT

BACKGROUND AND PURPOSE: Detecting incidence and enlargement of lesions is essential in monitoring the progression of MS. In
clinical trials, lesion load is observed by manually segmenting and comparing serial MR images, which is time consuming, costly, and prone
to inter- and intraobserver variability. Subtracting images from consecutive time points nulls stable lesions, leaving only new lesion activity.
We propose SuBLIME, an automated method for segmenting incident lesion voxels.

MATERIALS AND METHODS: We used logistic regression models incorporating multiple MR imaging sequences and subtraction images
from consecutive longitudinal studies to estimate voxel-level probabilities of lesion incidence. We used T1-weighted, T2-weighted, FLAIR,
and PD volumes from a total of 110 MR imaging studies from 10 subjects.

RESULTS: To assess the performance of the model, we assigned 5 subjects to a training set and the remaining 5 to a validation set. With
SuBLIME, lesion incidence is detected and delineated in the validation set with an AUC of 99% (95% CI [97%, 100%]) at the voxel level.

CONCLUSIONS: This fully automated and computationally fast method allows sensitive and specific detection of lesion incidence that
can be applied to large collections of images. Using the explicit form of the statistical model, SuBLIME can easily be adapted to cases when
more or fewer imaging sequences are available.

ABBREVIATIONS: AUC� area under ROC curve; IQR� interquartile range; NAWM� normal appearing white matter; PD� proton attenuation; ROC� receiver
operating characteristic; SuBLIME� Subtraction-Based Logistic Inference for Modeling and Estimation

MS is an inflammatory disease of the central nervous system

characterized by brain and spinal cord lesions. Although

lesions in the gray matter of the brain are common, lesions are

more readily recognized in the white matter.1 MR imaging of the

brain is used to detect lesions in MS and is essential in monitoring

disease progression. In addition to documenting disease effects at

one time, MR imaging can be used to assess longitudinal

changes.2 MR imaging observation of lesion volume change re-

sulting from the development of new lesions, enlarging lesions,

and resolving lesions is an important marker of disease progres-

sion and response to therapy.3 Lesion volume change is a com-

mon outcome in clinical trials and is computed by comparing

manual segmentations of serial MR imaging examinations,4

which is time-consuming, costly, and subject to inter- and intrao-

bserver variability. In addition, quantifying lesion change is chal-

lenging because incident and enlarging lesions represent only a

small proportion of all lesions, typically on the order of 5–10%.5

Therefore, a method that can automatically and accurately seg-

ment lesions to assess change is desirable.

Lladó et al6 provide a comprehensive review of the current

methods of lesion change segmentation by dividing them into

2 groups: intensity-based and deformation-based. Intensity-

based methods use voxel-level comparisons of intensities to

identify lesion change. These methods are further categorized

into deterministic, statistical, and temporal analysis methods.

Deformation-based methods rely on observing the changes

in tissue surrounding lesions due to lesion expansion or

contraction.

Deterministic methods are defined as segmentations of sub-
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traction images.6 Images from consecutive studies can be regis-

tered, normalized, and then subtracted to isolate areas of lesion

change and cancel radiologically stable disease-related mea-

surements. Manually segmented 2D T2-weighted subtraction

images identify a higher number of active lesions, with greater

inter- and intraobserver agreement5,7 than comparing inde-

pendently segmented serial images. Subtraction images created

from 3D imaging acquisitions have been shown to be less sus-

ceptible to artifacts than 2D subtraction images.8 To our

knowledge, no manual or automated method for combining

information from multiple types of MR imaging subtraction

images has been developed.

Current statistical methods detect changes in the brain be-

tween 2 MR imaging studies but do not provide fully automated

segmentations of lesion change.6 Volumes from 2 time points are

registered, and statistical models classify voxels as no signal

change, signal increase, signal decrease, and outside of the

brain.9 Higher lesion activity detection probabilities have been

obtained by extending this method to the use of multisequence

imaging data,10 but clusters of highly likely lesion change vox-

els must be reviewed by an expert to produce lesion change

segmentations.

Temporal analysis approaches are based upon voxel level

time-series.6 Longitudinal collections of images for a subject are

registered, and voxel intensities are analyzed as a function of time.

Lesions and other tissue classes of the brain can be segmented

from these time-series,11,12 but these methods require more than

2 MR imaging studies for each subject.

In contrast to intensity-based methods, deformation field-

based approaches observe the modification of the tissue sur-

rounding lesions.6 Volumes from 2 time points are registered, and

structural changes in the brain are determined by the local defor-

mation of voxels.13,14 While these methods have been shown to

perform better than intensity-based methods for the segmenta-

tion of lesions, they require a region of interest to be manually

selected before the analysis.

There is currently no fully automated method that produces

segmentations of incident lesions and lesion enlargement using

information from only 2 MR imaging studies. We therefore pro-

pose SuBLIME, a fully automated and computationally fast

method for segmenting voxel-level lesion incidence between 2

MR imaging studies. Using a logistic regression model with vari-

ous MR imaging sequences from consecutive studies, we estimate

the probability of lesion incidence in each voxel. The model uti-

lizes information from the FLAIR, PD, T2-weighted, and T1-

weighted volumes, as well as corresponding subtraction images,

to produce interpretable results in the form of regression coeffi-

cients that can be applied to new pairs of images quickly and

easily.

To show how multisequence image information improves le-

sion incidence and enlargement detection, while also being robust

to artifacts, we compare the full SuBLIME model to a nested

model fit with only the T2-weighted image. We also compare both

models to a population-level threshold of the T2-weighted sub-

traction image to show that the SuBLIME model framework im-

proves performance.

MATERIALS AND METHODS
Study Population
A total of 110 MR imaging studies (11 longitudinal studies each of

10 subjects) were analyzed. All participants gave written consent

and were scanned as part of an institutional review board–ap-

proved natural history protocol. To assess the performance of the

model, we randomly assigned 5 subjects (55 studies) to a set for

model training and used the remaining 5 subjects (55 studies) for

validation of our model. Demographic, diagnosis, and treatment

information for the training and validation subjects can be found

in Table 1. The mean time between scans in the training set was

130 days and the median was 35 days. The mean time between

scans in the validation set was 88 days and the median was 34 days.

Experimental Methods
We acquired whole-brain 2D FLAIR, PD, T2-weighted, and 3D

T1-weighted volumes in a 1.5T MR imaging scanner (Signa Excite

HDxt; GE Healthcare, Milwaukee, Wisconsin) using the body coil

for transmission. For signal detection, we used a volume head coil

for 107 of the studies and an 8-channel receive coil (Invivo,

Gainesville, Florida) in the remaining 3 studies. The 2D FLAIR,

PD, and T2-weighted volumes were acquired using spin-echo se-

quences and the 3D T1-weighted volume using a gradient-echo

sequence. The PD and T2-weighted volumes were acquired as

short and long echoes from the same sequence. We used various

scanning parameters for the different studies. The ranges for the

flip angle, repetition time, echo time, and inversion time can be

found in Table 2.

Image Postprocessing
For initial image processing, we used Medical Image Processing

Analysis and Visualization (http://mipav.cit.nih.gov) and Java

Image Science Toolkit (http://www.nitrc.org/projects/jist/).15 We

interpolated all images for each subject to a voxel size of 1 mm3

Table 1: Subject demographic, diagnosis, and treatment
information

Set Subtype Age Sex EDSS

Treatment with
Disease-Modifying
Therapy (Baseline)

Validation RRMS 37 Male 1.5 Yes
Validation RRMS 38 Female 2.0 Yes
Validation RRMS 48 Male 3.0 No
Training RRMS 38 Female 1.5 No
Training RRMS 30 Female 1.0 Yes
Training RRMS 43 Female 1.5 Yes
Validation RRMS 35 Female 1.5 Yes
Training RRMS 37 Female 1.0 Yes
Training RRMS 47 Female 3.0 Yes
Validation RRMS 56 Female 1.0 No

Note:—EDSS indicates Expanded Disability Status Scale; RRMS, relaping-remitting
multiple sclerosis.

Table 2: Study scanning parameters
FA (degrees) TR (ms) TE (ms) TI (ms)

FLAIR (90, 90) (10,000, 10,000) (77.8, 159.5) (2200, 2500)
T2-weighted (90, 90) (3400, 6500) (94.6, 112.0) NA
PD (90, 90) (3400, 6500) (11.8, 15.0) NA
T1-weighted (13, 20) (7.68, 10.3) (1.88, 4.05) (450, 750)a

Note:—FA indicates flip angle; NA, not available.
a 106 of the T1-weighted scans did not have an inversion time.
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and rigidly aligned all of the T1-weighted volume to the Montreal

Neurological Institute standard space. We then took the average

of the T1-weighted volume for all the studies for each subject and

registered the longitudinal collection of the T1-weighted, T2-

weighted, FLAIR, and PD images for the subject to this average

image. We removed extracerebral voxels using a skull-stripping

procedure.16 We automatically segmented the entire brain and

the NAWM using the T1-weighted and FLAIR images.17

Criterion Standard Measure
To fit the model and to measure performance, we required a set of

data in which the outcome is assessed by using a criterion stan-

dard measure. The criterion standard was obtained using manual

segmentation by an experienced neuroradiologist, who evaluated

consecutive T2-weighted and FLAIR images and the T2-weighted

subtraction image. For each study, we segmented 5 representative

axial sections of the brain: sections 50 (through the inferior tem-

poral lobes, pons, and cerebellum), 70 (including the midbrain

and occipital lobes), 90 (through the internal capsules), 110

(through the centrum semiovale), and 130 (near the vertex). Only

voxels with new lesion activity were segmented; voxels containing

existing lesions were not segmented. In total, there were 500 seg-

mented sections, with 23 sections containing lesions. There were a

total of 55 incident or enlarging lesions, with 26 in the training set

and 29 in the validation set. The neuroradiologist only segmented

changes between consecutive studies; in our analysis, we also only

focus on incidence between consecutive studies.

Normalization
We performed all statistical modeling in the R environment (ver-

sion 2.12.0; R Foundation for Statistical Computing, Vienna,

Austria) with the packages AnalyzeFMRI,18 biglm,19 ff,20 and

ROCR.21 We used intensities from the FLAIR, PD, T2-weighted,

and T1-weighted volumes to identify new lesions and enlarge-

ment of previously existing lesions. We denote the observed in-

tensity of voxel v, for subject i, from MR imaging study conducted

at time tj by

Mi
0�v, tj�, M � FLAIR, PD, T2, T1

where M indicates the imaging sequence.

Analyzing images across study visits requires that the images

be normalized so that voxel intensities have common interpreta-

tions. The normalization must allow for comparison of studies

within and between subjects. Our aim was to segment incident

lesions, which occur predominantly in the white matter; there-

fore, intensities from each study are expressed as a departure from

the subject’s NAWM mean in each imaging sequence22:

Mi
N�v, tj� � �Mi

0�v, tj� � � i,M
0 �tj��/� i,M

0 �tj�

where �i,M
0 (tj) and �i,M

0 (tj) are the mean and standard deviation of

the observed voxel intensities in the NAWM of subject i, from

sequence M, conducted at time tj. The NAWM segmentations

were developed using the high-resolution T1-weighted and

FLAIR images.17 SuBLIME can use any NAWM segmentation

approach and is not sensitive to the choice of segmentation

algorithm.

Subtraction Images
We calculated subtraction images for each sequence by subtract-

ing normalized images from consecutive MR imaging studies. We

denote the subtraction image intensity at voxel v for study tj by

�Mi
N�v, tj� � Mi

N�v, tj� � Mi
N�v, tj � 1�

where i is the subject and M is the imaging sequence. Misregistra-

tion, partial volume effects, and low signal-to-noise ratios can

cause artifacts and noise in subtraction images2; our approach

avoids these pitfalls by carefully integrating population-level nor-

malization with robustly tuned statistical prediction algorithms.

Subtraction-Based Logistic Inference for Modeling and
Estimation
SuBLIME uses logistic regression to model the probability that a

voxel is part of an incident or enlarging lesion. We model lesion

incidence at the voxel level using FLAIR, PD, T2-weighted, and

T1-weighted intensities from the current study; the subtraction

image intensities for each of these sequences; the time between the

consecutive studies; and the interactions between the subtraction

image intensities and the time between consecutive studies. The

result of our model is a collection of coefficients that can be used

to create 3D maps of the probabilities of lesion incidence. A flow

chart describing the SuBLIME method can be found in the

On-line Appendix.

The first step of this procedure is to isolate candidate voxels

that are likely to be part of incident or enlarging lesions. As

changes in lesion behavior are evident on T2-weighted subtrac-

tion images, we apply the logistic regression model only to voxels

that are hyperintense on these images. To avoid isolated voxels

that have high T2-weighted subtraction values as a result of noise,

we smooth the subtraction image by using a Gaussian kernel with

a window size of 5 mm. Then, we include only voxels that have

T2-weighted subtraction values larger than 1 standard deviation

of the subtraction intensities calculated across the image. We

chose the threshold of 1 standard deviation on the T2-weighted

subtraction image empirically and found it to be liberal in captur-

ing changes in lesions. Of the 1026 neuroradiologist-segmented

lesion voxels in the training set, the voxel selection mask excluded

only 45, or 4%. At least 1 voxel from every lesion was included in

the candidate voxels. The 45 missing voxels were found in the

voxel selection masks for 4 studies from 3 of the subjects in the

training set. The missed voxels were evenly distributed among the

sections with lesion incidence. On average, for each pair of con-

secutive studies in the training set, 14,311 (IQR: 9965; 17,638)

voxels were included as candidate voxels in the 5 representative

sections of the brain. The average number of voxels in the brain

from the 5 sections of the subjects in the training set is 59,116

(IQR: 56,269; 61,238). As the voxel selection procedure only ex-

cludes 4% of active lesion voxels, it has a negligible impact on

sensitivity, but it greatly improves specificity by eliminating more

than 75% of the candidate voxels for active lesions. The voxel

selection mask is illustrated in Fig 1; Fig 1A shows the radiologist

segmentation of an axial section of the brain, and Fig 1B shows the

candidate voxels for the same section that will be used in the

logistic modeling described here.

We then fit a voxel-level logistic regression model for lesion
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incidence over these candidate voxels, denoting the voxel-level

lesion incidence by the random variable W:

Wi�v, tj�

� �1, if subject i has lesion incidence in voxel v at time tj

0, otherwise

We model the probability that a voxel is part of a lesion incidence

using the logistic regression model:

1) logit �P�Wi�v, tj� � 1�� � �0 � �1�t �

�2FLAIRi
N�v, tj� � �3�FLAIRi

N�v, tj� � �4�FLAIRi
N�v, tj� � �t �

�5PDi
N�v, tj� � �6�PDi

N�v, tj� � �7�PDi
N�v, tj� � �t �

�8T2i
N�v, tj� � �9�T2i

N�v, tj� � �10�T2i
N�v, tj� � �t �

�11T1i
N�v, tj� � �12�T1i

N�v, tj� � �13�T1i
N�v, tj� � �t

where �t is the time in days between consecutive studies. Note,

however, that SuBLIME is a general logistic procedure encom-

passing a large number of logistic regression models. Here we use

the specific model (1) because it performs very well in our appli-

cation. The estimated coefficients from the full model and the

nested model with only the T2-weighted image, based on all of the

10 subjects, are given in the On-line Appendix. To account for the

correlation in patients over time, we nonparametrically boot-

strapped (with replacement) the subjects for the training and val-

idation set to allow for estimation of the confidence intervals for

the regression coefficients. An interpretation of the coefficients is

also provided in the On-line Appendix.

After we fit the model, we use the estimated coefficients to

create maps of the estimated probability of lesion incidence at

each voxel. To incorporate spatial information of the neighboring

voxels and reduce noise, we smoothed the

estimated probabilities from the model

using a Gaussian kernel with window size

of 3 mm. This kernel size was empirically

chosen and found to perform well.

RESULTS
Axial sections from normalized FLAIR,

PD, T2-weighted, and T1-weighted vol-

umes from 2 consecutive studies, and the

subtraction images of the 2 studies for

each sequence for a subject in the valida-

tion set, are shown in the On-line Appen-

dix. Lesions are characterized by hyperin-

tensities in FLAIR, PD, and T2-weighted

images, and hypointensities in T1-

weighted images, though not all lesions

appear on T1-weighted images. Lesion in-

cidence is characterized by hyperintensi-

ties in FLAIR, PD, and T2-weighted sub-

traction images and by hypointensities in

T1-weighted subtraction images. For the

same subject and study, an axial section of

the smoothed probability map of lesion

incidence from the full SuBLIME model is

shown in Fig 1C. Fig 1D shows the same

section for a model fit with only the T2

image. Red indicates areas with the higher probability of lesion

incidence, and blue indicates areas with lower probabilities of

lesion incidence. An axial section of the probability map from the

full model for another subject from the validation set is shown in

the On-line Appendix. The corresponding axial section of the

normalized FLAIR, PD, T2-weighted, and T1-weighted volumes

from the 2 consecutive studies and the subtraction images are also

shown.

In the Study Population section, we discussed assessing the

performance of the model by randomly assigning 5 subjects to the

training set and the remaining 5 subjects to a validation set. The

voxel-level ROC curves for the subjects in the validation set are

shown in Fig 2A. We optimized the voxel selection procedure and

fit the model (1) on the training set. We only used studies from the

validation set to estimate the voxel-level ROC curve and AUC.

The vertical axis of the ROC curve shows the true-positive rate

(sensitivity) for a given threshold on the probability map, and the

horizontal axis shows the false-positive rate (1 	 specificity) for

this threshold. These performance measures are known to be sus-

ceptible to instability. To account for this instability, as well as the

correlation in subjects over time, we nonparametrically boot-

strapped (without replacement) the training and validation sets.

This procedure allowed the estimation of confidence intervals for

the AUC. The blue curve is the ROC curve for the full model with

an estimated AUC of 99% (95% CI [97%, 100%]). The red curve

is the ROC curve for the model fit with only the T2-weighted

image with an estimated AUC of 97% (95% CI [88%, 99%]). The

green curve is the ROC curve for the population level threshold of

the T2-weighted subtraction image with an estimated AUC of

92% (95% CI [83%, 95%]).

FIG 1. Areas with lesion incidence are indicated with red boxes. A, Neuroradiologist manual
segmentation of an axial section of the brain. B, Selected voxels for SuBLIME modeling. C, Axial
section of the probability map from the full model.D, Axial section of the probability map from
the SuBLIME model fit with only the T2-weighted image. E, Binary segmentation of the proba-
bility map from the full model with false-positive rate of 0.01 overlaid on the FLAIR image. F,
Binary segmentation of the probability map from the full model with false-positive rate of 0.001
overlaid on the FLAIR image.
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The AUC calculated over the entire ROC space shown in Fig

2A is not optimal for the evaluation of the performance of an

algorithm designed to detect lesion incidence. This full AUC sum-

marizes test performance over regions of the ROC space that are

not clinically relevant. The subset of lesions showing change usu-

ally consists of a small fraction of all lesions in the brain and an

even smaller fraction of the entire brain. The average number of

voxels in the entire brain among the validation set is 1,277,736

(IQR: 1,204,162; 1,364,908). For the entire brain, a false-positive

rate of 0.01 would correspond to a volume of 12,800 mm3 of

healthy brain being falsely identified as lesion, making the result-

ing prediction maps difficult to interpret and clinically unaccept-

able. Thus, the performance of SuBLIME should only be evalu-

ated for very small false-positive rates; large false-positive rates are

not clinically relevant. Fig 2B shows the partial ROC curve for

false-positive rates up to 0.01. The blue curve corresponds to the

full model (1), the red curve corresponds to the model fit with

only the T2-subtraction image, and the green curve corresponds

to the population level threshold of the T2-weighted subtraction

image. The full model has a higher true-positive rate for these

relevant small false-positive rates, which further emphasizes the

importance of using the various imaging

sequences in addition to the T2-weighted

images. We have also provided the partial

ROC curves for the nested SuBLIME

models fit with only 3 imaging sequences

in the On-line Appendix.

The probability maps can be cut at de-

sired false-positive rates to create binary

segmentations of lesion incidence. Table

3 shows the threshold values, specificity,

and sensitivity for 4 different false-posi-

tive rates in the validation set. To put this

into context, we have also provided the

volume of lesion incidence that was seg-

mented at each threshold value. The true

lesion volume change from the neurora-

diologist’s manual segmentation was 625

mm3. Fig 1E shows a binary segmentation

of a section for a false-positive rate of 0.01,

and Fig 1F shows a binary segmentation

with a false-positive rate of 0.001. The sec-

tion with false-positive rate 0.01 contains

many false-positive lesions, while the

false-positive rate of 0.001 provides a

more accurate segmentation of the sec-

tion. Choosing threshold values is a trade-

off between sensitivity and specificity.

SuBLIME is flexible, and the appropriate false-positive rate may

be selected for a particular application.

DISCUSSION
Lesion volume change is frequently an outcome in clinical trials

for patients with MS and is traditionally assessed by manually

segmenting consecutive MRI. In a clinical trial setting, SuBLIME

may be used to replace or assist manual segmentation of incident

and enlarging lesions to reduce costs. After training, our fully

automatic method does not require human input and avoids the

variability introduced by manual segmentation. Training is nec-

essary for each new dataset, but can be fairly limited, as in the

example from this paper.

In contrast to many automatic segmentation techniques,

SuBLIME is computationally fast. Training the model on 5 sec-

tions from 110 images takes less than an hour on a standard work-

station. This process is only conducted once after collecting a

dataset that combines images from multiple protocols, and the

results may be summarized as the 14 coefficients in the model (1).

Using this fitted model to generate a probability map of the entire

brain from a set of new images takes only seconds using a standard

workstation. For this analysis, we trained and validated the model

on 5 representative sections of the brain. Confirmatory analyses

that train and validate on segmentations of the entire brain are

indicated for further understanding of the performance of

SuBLIME.

Because SuBLIME is fit voxelwise, it is sensitive to major mis-

registration within a study and between longitudinal studies for

the same subject. However, SuBLIME is robust to minor errors in

registration. By simultaneously comparing data from multiple se-

FIG 2. A, ROC curves for the voxel-level detection of incident and enlarging lesions for differ-
ent thresholds of the probability maps produced from SuBLIME, as well as different thresholds
of the T2-weighted subtractionwithout themodel and voxel selection procedure. The red ROC
curve is for the full model and has an AUCof 99% (95%CI [97%, 100%]). The blue ROC curve is for
the model fit with only the T2-weighted image and has an AUC of 97% (95% CI [88%, 99%]). The
green ROC curve is for thresholding the T2-weighted subtraction image without the model and
voxel selection procedure and has an AUC of 92% (95% CI [83%, 95%]). B, Partial ROC curves for
false-positive rates up to 0.01. The red curve is for the full model and the blue curve is for the
model fit with only the T2-weighted image. The green curve is for thresholding the T2-weighted
subtraction image without the model and voxel selection procedure.

Table 3: Binary segmentations
False-
Positive
Rate

Threshold
Value Specificity Sensitivity

Volume Change
(Actual 625 mm3)

0.01 0.0022 0.99 0.95 30454
0.001 0.0229 0.999 0.83 3520
0.00025 0.0815 0.99975 0.54 1082
0.0001 0.1396 0.9999 0.35 509
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quences and only considering candidate voxels, SuBLIME distin-

guishes between artifacts and lesion incidence. We suspect

SuBLIME may also be sensitive to the radiologist’s manual seg-

mentation. In this analysis, we used a single expert segmentation

of the sections. Future studies will compare the SuBLIME seg-

mentations to additional manual segmentations to investigate the

influence of interrater variability.

SuBLIME uses a voxel-level model for assessing the outcome.

The assumption of independence between voxels is imperfect, as

lesions consist of clusters of voxels. In this work, we use smooth-

ing of the T2-weighted subtraction image in candidate voxel se-

lection, followed by a second smoothing of the predicted proba-

bilities of the model to incorporate the spatial nature of the data.

Nevertheless, further incorporation of neighboring voxel infor-

mation is warranted.

For this analysis, we decided to use a group of patients

with early relapsing disease because new lesion activity is

more common in this group. In the future, we plan to apply

SuBLIME to a larger group of patients with a wide spectrum of

disease activity and severity. Although developed for the particu-

lar application of longitudinal lesion incidence segmentation in

MS, SuBLIME can be applied more generally to coregistered serial

images to detect other changes and pathologies. We expect that a

version of SuBLIME can easily be adapted to monitor other pa-

thologies assessed using MR imaging, such as volumetric changes

in patients with vascular disease or tumors. Our techniques may

also be useful for monitoring changes in other imaging outcomes,

including studies that use combinations of imaging techniques

such as PET-CT studies in oncology. Finally, it is likely that the

methods can be applied to organs outside the brain, including the

lung, liver, and kidneys.

CONCLUSIONS
SuBLIME is a fully automated and computationally fast method

that allows sensitive and specific detection of lesion incidence and

enlargement. Using the explicit form of the statistical model,

SuBLIME can easily be adapted to cases when more or fewer im-

aging sequences are available.
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