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BACKGROUND AND PURPOSE: Automatically identifying carotid plaque composition using MR imaging
remains a challenging task in vivo. The purpose of our study was to compare the detection and
quantification of carotid artery atherosclerotic plaque components based on in vivo MR imaging data
using manual and automated segmentation.

MATERIALS AND METHODS: Sixty patients from a multicenter study were split into a training group (20
patients) and a study group (40 patients). Each MR imaging study consisted of 4 high-resolution carotid
wall sequences (T1, T2, PDw, TOF). Manual segmentation was performed by delineation of the vessel
wall and different plaque components. Automated segmentation was performed in the study group by
a supervised classifier trained on images from the training group of patients.

RESULTS: For the detection of plaque components, the agreement between the visual and automated
analysis was moderate for calcifications (� � 0.59, CI 95% [0.36–0.82]) and good for hemorrhage
(0.65 [0.42–0.88]) and lipids (0.65 [0.03–1.27]). For quantification of plaque volumes, the intraclass
correlation was high for hemorrhage (0.80 [0.54–0.92]) and fibrous tissue (0.80 [0.65–0.89]), good for
lipids (0.65 [0.43–0.80]), and poor for calcifications.

CONCLUSIONS: In 40 patients with carotid stenosis, our results indicated that it was possible to
automatically detect carotid plaque components with substantial or good agreement with visual
identification, and that the volumes obtained manually and automatically were reasonably consistent
for hemorrhage and lipids but not for calcium.

ABBREVIATIONS: CI � confidence interval; HIRISC � High-Resolution MR Imaging of Atheroscle-
rotic Stenosis of the Carotid Artery; ICC � intraclass correlation coefficient; PDw � proton
attenuation-weighted; TOF � time of flight

Accurate information of atherosclerotic plaque morphol-
ogy and composition is necessary to distinguish stable

from unstable plaques that are likely to cause embolic events.1

The vulnerability of an atherosclerotic plaque to rupture is
believed to be related to its intrinsic composition, such as the
size of the lipid core and presence of intraplaque hemorrhage.
In vivo multicontrast high-resolution MR imaging has
emerged as a tool capable of identifying and quantifying the
main components of the atherosclerotic plaque,2 including
hemorrhage, calcifications, lipid core, and fibrous tissue.3-5

Most of the current imaging studies of atherosclerotic plaques
rely on a human observer’s interpretation of MR images with
different contrast weightings, producing measurements that
have been compared with histology assessment.6 Manual
plaque segmentation requires expertise, is time consuming,
and produces results that are subject to interobserver variabil-
ity.7 In contrast, automated classification could yield objective
and reproducible assessment of plaque composition.8,9

Promising work in this field has showed that the composi-
tion of atherosclerotic carotid plaques can be objectively de-

termined on ex vivo MR imaging, by means of algorithmic
classifiers.10 Although ex vivo validation is a critical step in the
establishment and validation of algorithms, it cannot be di-
rectly extrapolated to in vivo material, given the lower image
quality and motion artifacts that are inherent to MR images
acquired in a clinical setting. Two pilot studies have shown the
feasibility of automated plaque analysis in vivo by comparing
the accuracy of the classifiers with that attained by human MR
imaging readers, using histology as the standard of refer-
ence.9,11 Both studies reported encouraging results that were
comparable with, or possibly more accurate than, manual
analysis. However, these previous studies were based on sin-
gle-center MR imaging data and relied on a small sample of
selected patients with high-grade symptomatic carotid steno-
sis scheduled for carotid endarterectomy.

Therefore, the goal of our work was to extend these results
to a larger number of patients for whom markers of plaque
instability are essential for therapeutic decision, that is, pa-
tients with either symptomatic moderate stenosis or asymp-
tomatic high grade stenosis, using MR images acquired in a
multicenter setting.

Materials and Methods

Study Population
HIRISC is an ongoing multicenter prospective study assessing the

prognostic value of carotid plaque vulnerability, as defined on MR

imaging, for the prediction of cerebral vascular events. Patients are

eligible for the study if 1) they have symptomatic stenosis (40% to

69%, according to NASCET criteria) or asymptomatic stenosis (60%

NASCET or greater) of the internal carotid artery bifurcation; 2) they
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Descartes, INSERM UMR 894, Service d’Imagerie Morphologique et Fonctionnelle (O.N.,
R.M., J.-F.M., C.O.), Centre Hospitalier Sainte-Anne, Paris, France; Université Paris Des-
cartes, INSERM UMR 894, Service de Neurologie Vasculaire (E.T.), Centre Hospitalier
Sainte-Anne, Paris, France.

Please address correspondence to C. Oppenheim, Service d’Imagerie Morphologique et
Fonctionnelle, Centre Hospitalier Sainte-Anne, 1 rue Cabanis, 75014, Paris, France; e-mail:
c.oppenheim@ch-sainte-anne.fr

http://dx.doi.org/10.3174/ajnr.A3028

EXTRA
CRA

N
IA

L
VA

SCU
LA

R
ORIGIN

AL
RESEARCH

AJNR Am J Neuroradiol 33:1621–27 � Sep 2012 � www.ajnr.org 1621



are not scheduled for endarterectomy within the next 6 months; and

3) they do not have any other major cause of stroke. The study was

approved by the local ethics committee and all patients signed an

informed consent form. From the HIRISC imaging data base, we

selected 65 consecutive patients who fulfilled the following imaging

criteria: of the 4 MR images available, 3 had to be excellent, and the

remaining 1 at least good on a subjective 4-level image quality scale

(poor, average, good, or excellent), rated by 2 independent readers.

Five patients were excluded because manual registration of the 4 MR

images was not possible because of severe patient motion. The re-

maining 60 patients were randomly split into a training group of 20

patients and a study group of 40 patients. For each patient, the carotid

artery qualifying for the HIRISC study was analyzed. The training

group consisted of 10 men and 10 women (mean age � SD of 72.3 �

12.4 years), 10 right and 10 left carotid stenoses, 11 symptomatic and

9 asymptomatic stenoses, with an overall mean 48.7 � 13.2%

NASCET degree of stenosis. The study group consisted of 27 men and

13 women (mean age 71.9 � 10.2 years), 21 right and 19 left carotid

stenoses, 25 symptomatic and 15 asymptomatic stenoses, with an overall

44.2 � 14.8% NASCET degree of stenosis. There was no significant dif-

ference between the training group and the study group for any of these

parameters (Student t test for quantitative variables, �2 test for categoric

parameters, level of significance P � .05).

MR Imaging Protocol
All patients were imaged on a 1.5-T MR unit using the same 4-channel

phased-array carotid surface coil (Machnet BV, Eelde, the Nether-

lands). Before starting the study, the MR protocol and acquisition

parameters were standardized across platforms (Philips, Siemens, GE

Healthcare). A fast gradient-echo pulse sequence was used in axial,

sagittal, and coronal planes as a localizer. The median sagittal image

was used to plan a 2D TOF gradient-echo sequence. Twenty to 30

sections with a thickness of 4 mm were set to cover the neck area using

the phased array coil. The z-axis coordinates of the qualifying carotid

bifurcation on the 2D TOF images were used to position the following

4 pulse sequences: 3D TOF, T1WI, PDw, and T2WI. The field of view

(130 � 130 mm) was identical for all 4 sequences. T1WI, T2WI, and

PDw images were obtained with double inversion recovery (ie, black-

blood) fast spin-echo sequences with electrocardiographic gating

during free breathing using 8 axial sections (3-mm thick, 0.3-mm

gap) centered on the qualifying carotid stenosis. PDw and T2WI pa-

rameters were as follows: repetition time 2 R-R intervals; effective

echo time 16 –20 ms for PDw and 50 ms for T2WI; acquisition matrix

256 � 512 (acquired in-plane resolution 508 � 508 �m, interpolated

to 254 � 254 �m by zero-filling in k-space); signal intensity averaged

2; fat suppression. T1WI parameters were as follows: repetition time

1 R-R interval; echo time 9 –10 ms; acquisition matrix 352 � 256

(acquired in-plane resolution 451 � 508 �m, interpolated to 254 �

254 �m by zero-filling in k-space); signal intensity averaged 3. The 3D

TOF sequence used a gradient-echo pulse sequence with repetition

time 30 ms; echo time 6.9 ms; flip angle 20°, acquisition matrix 288 �

224, 512 zero-filling (acquired in-plane resolution 451 � 580 �m,

interpolated to 254 � 254 �m by zero-filling in k-space); signal in-

tensity averaged 2; 20 sections of 2.2-mm thickness, 1 slab. Total ac-

quisition time was approximately 25 minutes.

Manual Image Review
For each patient, the images from the 4 vessel wall sequences were

visualized using QPlaqueMR software (Medis Medical Imaging Sys-

tems BV, Leiden, the Netherlands) and manually coregistered. Two

readers, blinded to the results of the automated image analysis, exam-

ined, in consensus, all MR images of the qualifying carotid artery

using a standardized form and published criteria.5,6,12 For each loca-

tion, the 4 MR images (PDw, T2WI, T1WI, TOF) were reviewed to-

gether. First, the thickness of the vessel wall was reviewed. In the case

of a thickened vessel wall, the inner and outer boundaries were delin-

eated. Next, the vessel wall was segmented as fibrous tissue or as 1 of

the different plaque components, namely, calcifications, hemorrhage,

or lipid core. All signal intensities were compared with the adjacent

sternocleidomastoid muscle. Calcifications were defined as areas of

hypointensity on all 4 sequences. Recent and fresh intraplaque hem-

orrhages (type 1 and 2, as defined previously)3 were considered to-

gether as hyperintensities on T1WI and TOF images. Lipid-rich ne-

crotic core and fibrous components share the same signal intensity on

PDw images, that is, signal intensity isointense or slightly hyperin-

tense compared with that of the sternocleidomastoid muscle. PDw

and T2WI were compared so as to discriminate between lipids and

fibrous component as follows: lipid core was identified as an area in

which the signal intensity dropped on T2WI, compared with PDw

images, whereas fibrous component corresponded to a relatively high

signal intensity area on both sequences.

Calcifications, hemorrhages, and lipid core were considered pres-

ent if they were observed on at least 1 section. Using the manual

drawing features of the QPlaqueMR software, area measurements of

vessel, lumen, lipids, hemorrhages, and calcifications were obtained

for each location by tracing the boundaries of each component. The

fibrous component area was calculated by subtracting lipid core,

hemorrhage, and calcium from the plaque area. For each component,

volumes per artery were calculated by multiplying the sum of areas

from each cross-sectional location by the section thickness plus inter-

section gap.

Automated Image Analysis
A pattern recognition system, developed using PRTools13 and Matlab

(2007b; MathWorks, Natick, Massachusetts), was used to automati-

cally classify the pixels inside the vessel wall. Vessel wall pixels were

defined by the manually delineated contours of the lumen and outer

wall. First, the vessel wall images were normalized based on the me-

dian signal intensity within a 4 � 4-cm region of interest centered at

the vessel lumen. This normalization step is required for comparing

the different sequences of a single subject as well as for intersubject

comparison. Then, for each pixel within the vessel wall, the following

features were calculated: normalized signal intensity, zero-, first-, and

second-order derivatives at multiple scales from the sequences; dis-

tance to the inner and outer wall; and local vessel wall thickness. Based

on these features, a linear discriminant classifier was built for classi-

fication of each pixel as being calcium, lipid core, hemorrhage, or

fibrous tissue. This supervised classifier was trained with the images

and manual segmentations from the 20 patients of the training group.

During the training phase, the features and their corresponding

classes were used to learn statistics describing the data. Subsequently,

the trained classifier was used to automatically classify the vessel wall

contents of the study group of 40 patients. As in the manual analysis,

the presence and volumes of plaque components were determined.

Comparison between Automated and Manual
Segmentation
The 2 methods were compared on a per-patient basis. First, the pres-

ence and volumes of plaque components in each qualifying artery

were determined for the whole dataset. Subsequently, the segmenta-
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tion results for each patient were assessed by rating whether a plaque

component was present or not. Agreement between the automated

and manual analysis was assessed for the qualitative segmentation

(presence or absence) of each component using the � statistic for

dichotomous data and percentage of agreement (similar to accuracy

in binary classification). According to Landis and Koch,14 values of �

between 0.8 and 1 indicate almost perfect agreement; 0.6 to 0.8, sub-

stantial agreement; 0.4 to 0.6, moderate agreement; 0.2 to 0.4, fair

agreement; 0.0 to 0.2, slight agreement; and �1.0 to 0.0, poor

agreement.

Quantitative assessment was performed by measuring the volume

for each plaque component per artery by both segmentation methods

and calculating the ICC with a 2-way random effect for continuous

variables. ICC values over 0.80 were considered excellent. For all

agreement parameters, 95% CIs were calculated. Subsequently, scat-

terplots for plaque volumes in patients were generated to visually

compare both methods, and the Pearson correlation coefficient was

calculated. A paired Wilcoxon test was used to determine whether the

automated and manual analysis method produced different volumes

for each plaque component. A P value �.05 was considered signifi-

cant. Bland-Altman analysis15 was also used to assess any size-depen-

dent bias in the measurements between methods, limits of agreement,

and proportional errors.

Results
Of the 344 sections available in the study group (mean 8.6 per
patient), 137 included a thickened wall with atherosclerotic
material, according to the visual analysis. Of the 207 remain-
ing sections, only 2 were positive for lipid core with the auto-
mated analysis (1.0 and 0.76 mm3, respectively) and 1 was
positive for hemorrhage (2.97 mm3).

Qualitative Analysis
In the training set of 20 patients, calcium was visually present
in 10 cases hemorrhage in 7 cases, while lipids and fibrous
tissue were observed in all 20 cases. There were no significant
differences in the prevalence of visual detection of each com-
ponent between the training set and the study group (P � .65
for calcium, P � .12 for hemorrhage, P � .31 for lipids). In the
40 patients of the study group (Fig 1), calcium was detected by
both methods in 13 patients, hemorrhage in 18 patients, and
lipids in all except 2 patients (Table 1). The percentage of
agreement for calcium and hemorrhage was 80% or higher.
The � values for calcification and hemorrhage indicated mod-
erate and substantial agreement. For identification of lipids,
the agreement was almost perfect (97.5%), but because this
component was present in almost all plaques, the � agreement
was only substantial (� � 0.65 [0.03–1.27]).

Quantitative Analysis
The ICC (95% CI) between volumes obtained by the 2 meth-
ods was poor for calcifications (0.10 [�0.45– 0.60]), excellent
for hemorrhage (0.80 [0.54 – 0.92]), and good for lipids (0.65

Table 1: Percentage of agreement and � statistic of the plaque
components per patient (n � 40)

Plaque
Component Manual

Automated

Agreement � [95% CI]Absence Presence
Calcification Absence 19 3 80.0% 0.59 [0.36–0.82]

Presence 5 13
Hemorrhage Absence 15 4 82.5% 0.65 [0.42–0.88]

Presence 3 18
Lipid core Absence 1 0 97.5% 0.65 [0.03–1.27]

Presence 1 38

Fig 1. Three illustrative examples of manual and automated segmentation. A, Lipid core (yellow ) corresponds to an area in which the signal intensity dropped on T2WI compared with
PDw images. B, Calcifications (orange) correspond to an area of hypointensity on all 4 sequences. C, Recent hemorrhage (blue) corresponds to an area of hyperintensities on T1WI and
TOF images. Note that the automated classifier underestimated the hemorrhage area.
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[0.43– 0.80]). As shown in Fig 2, the correlation between vol-
umes was stronger for lipids (r � 0.88, P � .01) than for
fibrous tissue (r � 0.80, P � .01) and hemorrhage (r � 0.80,
P � .01). For calcifications, the linear correlation coefficient
was close to zero (r � 0.1, not significant). As shown in Table
2, the automated approach overestimated the volume of lipids
(P � .01). For small volumes of lipids, the Bland-Altman plot
showed good agreement between the 2 methods (Fig 3). Con-
versely, for plaques with large volumes of lipids (�100 mm3),
the plot indicated a clear overestimation of lipid volumes by
automated segmentation compared with manual segmenta-
tion. These plaques, in which the automated segmentation
overestimated the lipid volumes, were subsequently analyzed
visually. They corresponded to carotid arteries curving hori-
zontally after the bifurcation so that the imaging plane was not
perpendicular to the arterial wall. This resulted in partial vol-
ume effects in the images as well as differences in lumen shape

between the MR images, causing low pixel correspondence
between the 4 MR images and resulting in classification errors.
There were no statistical differences between volumes ob-
tained by the 2 methods for the fibrous component or hemor-
rhage. For the other plaque components, the Bland-Altman
plots did not show any obvious bias according to the size of
these components, though differences existed between vol-
umes obtained by the 2 methods.

Discussion
The purpose of this study was to evaluate the efficacy of auto-
mated plaque segmentation for quantifying the main plaque
tissue types in carotid arteries on the basis of multicontrast
MR imaging. In a population of 40 patients with carotid ath-
erosclerosis and high-resolution MR images acquired in a
multicenter setting, our results indicated that 1) it was possible
to automatically detect carotid plaque components with sub-
stantial or good agreement with visual identification, and 2)
the volumes of plaque components obtained manually and
automatically were reasonably consistent for hemorrhage and
lipids but not for calcium.

Replacing subjective, time-consuming manual segmenta-
tion with an automated segmentation alternative has been a
long-time goal. Two studies have tested the possibilities of
using supervised classifiers in vivo compared with histol-
ogy9,11 and showed encouraging results. In both studies, the
algorithm was trained on a small set of patients and then tested
on a group of 12 or 13 patients. Both suggested the benefits of
supervised classifier algorithms for the detection and the
quantification of plaque components. It was even suggested
that this approach might be more accurate than manual re-
view of high-resolution MR images for some of the compo-
nents. All ex vivo studies and the 2 in vivo studies have focused
on patients scheduled for endarterectomy. Our study focused
on a different population, composed of patients with moder-
ate symptomatic or severe asymptomatic stenosis and not

Fig 2. Graphs showing scatterplots of the volumes measured with the manual and automated methods for each component. Each dot corresponds to 1 patient.

Table 2: Volume of plaque components

Plaque Component

Volume (mm3)

Mean SD Median IQR
P

value*
Hemorrhage (n � 18)

Manual 112 103 86 21–199 0.16
Automated 90 104 58 13–124

Calcification (n � 13)
Manual 20 18 18 11–26 0.5
Automated 15 17 7 2–23

Lipid core (n � 38)
Manual 73 66 51 33–91 0.01
Automated 125 149 82 19–196

Fibrous tissue (n � 40)
Manual 272 176 229 163–344 0.27
Automated 237 162 216 122–340

Note:—IQR indicates interquartile range; n � number of patients for whom a given
component was detected by both methods.
* Paired Wilcoxon test.
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scheduled for endarterectomy. In this population, the benefit
of endarterectomy is still controversial and much is to be ex-
pected from markers of plaque instability.16 To extend the
findings of previous “pilot” in vivo studies, a larger group of 60
patients was included. Furthermore, these patients were part
of a multicenter MR cohort and this should strengthen the
generalization of our findings.

Identification of Plaque Components
Agreement (and � coefficients) between the manual and au-
tomated segmentation method for the detection of calcifica-
tion, hemorrhage, and lipid core was good and within the
range of interobserver variability observed in a previous study
dealing with visual analysis on a similar population.7 The good
results observed for hemorrhage can be explained by the high
contrast presented by this component on the 4 MR images and
by the fact that recent hemorrhage strongly differs from that of
other plaque components, especially on T1WI and TOF se-
quences. This also explains the high sensitivity of the visual
detection of hemorrhage on high-resolution MR images com-
pared with histology reported by others.10,17 Visual detection
of lipid components is based on the comparison of 4 MR im-
ages, to eliminate calcification and hemorrhage, and subse-
quently on a signal intensity loss between PDw and T2WI.12

This stepwise analysis accounts for the difficulties encoun-
tered in both visual and automated analysis. However, the
percentage of agreement between the 2 methods for lipids was
almost perfect, and the lower � value can be explained by the
high prevalence of this plaque component.18 Lipid core was
detected in almost all the patients by both the automated and
manual segmentation methods. Histologic and MR studies
have also reported a high prevalence of lipid core, seen in up to
two-thirds of plaques.6,7

Identifying calcifications using MR imaging is still a diffi-
cult task. It relies on differences in magnetic susceptibility be-
tween the mineral components and neighboring soft tissues.
3D gradient-echo TOF sequences are theoretically the most
sensitive, but they are more affected by artifacts compared
with other types of sequences.7 Moreover, on 3D TOF se-
quences, calcifications adjacent to the lumen are difficult to

separate from other plaque components, such as the fibrous
cap, because they share the same signal intensity characteris-
tics.7,19 However, these issues affect both manual and auto-
mated methods, which could explain why agreement re-
mained reasonable in line with another group.8 Finally, these
difficulties may not in fact hamper the prediction of vascular
risk, because the prognostic value of calcifications for embolic
risk is still debated.20

Quantification of Plaque Components
Agreement between the automated and manual segmentation
methods was high for the quantification of lipid core and hem-
orrhage and low for calcification, as indicated by the ICC. The
same trend appeared when we calculated the Pearson correla-
tion coefficients for the volumes of each component. These
correlations lie within the range of previously published values
obtained by the only group that distinguished the lipid core
from recent hemorrhage.9 Another group chose to define ne-
crotic core as regions of lipids and intraplaque hemorrhage,
and consequently only provided global results.11 The correla-
tions also compare favorably with results obtained visually by
2 observers. However, the Bland-Altman analysis showed that
there is still a considerable discrepancy between the manual
and automated outlining. Hofman et al observed that the
human eye underestimated the size of hemorrhage and over-
estimated the size of lipids.9 This might explain, in part, the
discrepancies between our automated and manual segmenta-
tions. The Bland-Altman plots additionally showed that the
consistency between measurements decreases for plaques with
a large lipid core. Large discrepancies were explained by low
pixel correspondence between the different sequences, caus-
ing errors in the automated classification in patients with a
horizontal carotid artery.

Whether calcifications, displayed as a signal intensity loss,
should be measured on MR imaging is controversial.21 Even
though our measurements may not be very accurate, the error
theoretically applies to both segmentation methods. It does
not explain the poor agreement observed between measure-
ments obtained by the 2 methods. In line with this, another
group reported a low correlation between manual segmenta-

Fig 3. Bland-Altman graphics showing the differences between volumes obtained by manual and automated segmentation plotted against the mean of the 2 measurements. Volumes per
patient are expressed in mm3. The dotted lines indicate the average bias and the dashed lines show the 95% CI (mean bias � 1.96 SD). For each component, a negative bias indicates
that the automated segmentation overestimates the volumes. A positive bias indicates that the automated segmentation underestimates the volumes.
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tion and various classifiers, as well as a poor correlation with
histology.9 This may be related to poor performance of the
supervised classifier. Performance of a supervised classifier is
highly dependent on the training set. The training set should
contain sufficient representative examples of each plaque
component. The frequency of calcified plaques and volume of
calcifications in the data we used were small compared with
the other 2 components, explaining, at least in part, the low
performance. Indeed, better results were reported in a study
with higher frequency of calcified plaques in the training set.8

The use of the postcontrast T1WI sequence may also improve
calcium detection.11

Limitations
Our study has a number of limitations. First, it lacks an ex vivo
reference standard to determine absolute accuracy. Even
though we found good agreement between the 2 methods, we
cannot rule out the possibility that both methods misinter-
preted the images. We did, however, use a well-documented
manual image review procedure that has been extensively val-
idated against ex vivo references.6,22 Second, like others,9,11 we
selected MR examinations with good quality images among a
larger imaging data base. The results probably depend on im-
age quality and cannot be extrapolated to all high-resolution
MR imaging of human carotid plaques, irrespective of the im-
age quality. Third, the classifier was trained on a limited train-
ing set of 20 patients. The results would potentially have been
better with a larger training set, including more samples of
hemorrhage and calcifications. Fourth, given the low interob-
server reproducibility for fibrous cap characterization, previ-
ously reported on a similar set of images,7 we chose to exclude
automated characterization of the fibrous cap (thick, thin, or
ruptured), which is a marker of plaque instability. In our opin-
ion, this goal requires an improvement of the image quality in
terms of spatial resolution and contrast. For instance, gadolin-
ium injection could help distinguish between lipid core and
fibrous cap.11,22 Fifth, we considered fresh (type 1) and recent
(type 2) hemorrhage together, given the low prevalence of type
1 hemorrhage17 and the previously reported moderate agree-
ment between automated and manual segmentations for the
identification of these hemorrhage subtypes.8

Finally, the automated method we used represents one of 4
basic steps in carotid plaque analysis: lumen boundary detec-
tion, outer wall boundary detection, multicontrast registra-
tion, and plaque segmentation. We have addressed the final
step, which is the most critical for automation. Automated
methods for the remaining steps have previously been
reported.23,24

Conclusions
Once automated methods for atherosclerotic plaque segmen-
tation, such as the one presented here, have been fully vali-
dated, a considerable gain in processing time can be expected,
together with elimination of interobserver variability. Auto-
mated analysis could become a clinical tool for the prethera-
peutic assessment of atherosclerotic carotid artery stenoses
and, further, could be integrated in longitudinal or trans-
versal studies of large populations. By providing quantitative

measurements of lipids and hemorrhage, automated methods
could improve the reliability of quantitative markers for
plaque instability and ease their use as criteria for assessing the
efficacy of treatments stabilizing atherosclerotic plaque.
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Samson (neurologists), F. Bonneville, D. Dormont (radiolo-
gists); Poitiers: C. Paquet, G. Godenèche, J.P. Neau (neurolo-
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diologist), E. Le Bars (engineer).

Disclosures: Rob van der Geest—UNRELATED: Consultancy: Medis Medical Imaging
Systems; Royalties: Medis Medical Imaging Systems.* Supported by a grant from the
Programme Hospitalier de Recherche Clinique of the French Ministry of Health (No. AOR 02
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