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Phosphorus-31 Brain MR Spectroscopy in
Women During and After Pregnancy Compared

with Nonpregnant Control Subjects

Anita Holdcroft, Lisa Hall, Gavin Hamilton, Serena J. Counsell,
Graeme M. Bydder, and Jimmy D. Bell

BACKGROUND AND PURPOSE: A reversible decrease in brain size has been demonstrated
during normal pregnancy that is maximal at term and returns to normal after many months.
The purpose of this longitudinal study was to use phosphorus-31 MR spectroscopy to determine
if metabolic changes explain this physiologic event.

METHODS: Pregnant women (n � 12) were examined at term and up to 6 months after
delivery. Nonpregnant control subjects (n � 7) were imaged twice (a month apart) to exclude
hormone effects. Brain 31P MR spectra were acquired at 1.5 T, and intracellular pH was
calculated from the chemical shift between phosphocreatine and inorganic phosphate reso-
nances. Statistical analysis was performed by using an analysis of variance.

RESULTS: We found no statistically significant differences in the relative levels of metabolite
associated with cerebral bioenergetics and cell membrane metabolism between pregnant women
and nonpregnant women. However, a significant increase in cerebral pH was observed in
pregnant women at 6 weeks after delivery compared with control subjects (7.074 � 0.063 vs
7.017 � 0.041; P < .05). pH returned to normal by 6 months after delivery (7.014 � 0.010).

CONCLUSION: Changes in brain size associated with pregnancy appear to be associated with
an increase in intracellular pH after delivery. The observed alkalosis may reflect altered
cellular metabolism. These persistent brain perturbations associated with pregnancy indicate
that, when postpartum physiologic and pharmacologic changes are measured, long-term effects
may be expected in central nervous system processing.

A reversible decrease in brain size in pregnancy that has
a prolonged recovery is reported (1). The normal se-
quence of change is a progressive decrease in brain size
during pregnancy up to the time of delivery, followed by
an increase in size for as long as 6 months. A similar
sequence, but one of greater magnitude, has been ob-
served in women with mild or severe preeclampsia (1).
The changes take months to return to normal after
delivery. On quantitation by using contour and thresh-
olding technique (2), highly significant changes occur:
The lateral and third ventricular volume increases at
term by up to 30%, and brain size decreases by as much
as 6% from about 20 weeks of gestation—about the

time of placental implantation—and then returns to
normal at about 6 months.

Rutherford et al (3) have reported relative cerebral
ischemia in preeclampsia compared with healthy
pregnancy. The mechanism and functional relevance
is speculative and may be related to hormonal (4),
vascular (5) and metabolic (6) disturbances. This
present study was designed to investigate the meta-
bolic changes that may be part of this normal adap-
tation to parturition.

Phosphorus-31 MR spectroscopy provides in vivo
information about the relative concentrations of neu-
rochemicals, particularly membrane phospholipids
and high-energy phosphates (7). Although it has rel-
atively low spatial resolution, our previously reported
MR imaging findings (1) of diffuse global changes
suggest that this technique is appropriate for defining
normal cerebral metabolism and its potential pertur-
bation in parturition. Hence, the aim of this study was
to assess changes in brain metabolism by means of in
vivo 31P MR spectroscopy in a longitudinal design in-
volving pregnant women and a control group of non-
pregnant women.
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Methods

Patients and Control Subjects
Approval was obtained from the ethics committee of our

institutional review board, and participants provided written
informed consent. Pregnant women (n � 12) were scanned at
term, at 6 weeks, and (if possible) at 6 months after delivery.
For all imaging studies performed during pregnancy, the ab-
domen and pelvis were positioned with the left side down to
avoid occlusion of the inferior vena cava; this position was
maintained for the duration of the scan, which was about 30
minutes. Nonpregnant women (n � 7) were included as control
subjects; they were scanned twice, a month apart, to exclude
sex-hormone-related effects.

31P MR Spectroscopy
31P MR spectra were acquired, as previously described (8).

Briefly, all measurements were obtained by using a 1.5-T MR
imaging unit (Eclipse; Philips Medical Systems, Cleveland,
OH). T1-weighted spin-echo axial MR images were acquired to
define the position of the volume of interest. Localized 31P MR
spectra (70 � 70 � 70–mm voxel; TR � 10 seconds; 64 signal
intensity averages) were acquired by using an image-selected in
vivo spectroscopy sequence (9). Figure 1 is an axial image
(TR/TE � 646/20) showing typical voxel placement in the
brain. Given the large voxel required for 31P MR spectroscopy,
no attempt could be made to localize a particular region of the
brain.

Spectra Analysis
A single observer (G.H.) blinded to the clinical status of the

subjects analyzed the MR spectra by using prior knowledge in
the Algorithm for Magnetic Resonance algorithm (10) in-
cluded in the Magnetic Resonance User Interface software
program (11). Full details of the analysis technique and prior
knowledge used to fit the spectra have been previously de-
scribed (12). Peak areas for phosphomonoester (PME), inor-
ganic phosphate (Pi), phosphodiester (PDE), phosphocreatine
(PCr), and three nucleoside triphosphates (NTPs; �, �, and �)
were calculated as a percentage of the total peak areas, or the
fraction of the peak area compared with the sum of all the peak
areas of all narrow resonances (Table).

In Vivo pH Calculation
Intracellular pH (pHi) was measured by using the chemical

shift difference between the Pi and PCr peaks and the Hen-
derson-Hasselbalch equation in the form published by Petroff
et al (13): pHi � 6.77� log [(A � 3.29)/(5.68 � A)], where A �
chemical shift difference in ppm between Pi and PCr (Fig 2).

Descriptive and comparative data analysis was performed by
using the SPSS software (version 11 for Windows; SPSS, Chi-
cago, IL). We also conducted a one-way analysis of variance
using multiple comparisons and post-hoc tests to compare
findings in pregnant women with those of the control group.

Results
Twelve pregnant women participated in this study,

completing the term and 6 week scans. Three were
unavailable for the 6-month scan. All but two were
breastfeeding at 6 weeks. The nonpregnant control
group consisted of seven age-matched female volun-
teers. The mean (SD) ages of the women were 33 (4)
years in the pregnant and 28 (6) years in the control
group; these were not statistically different.

Figure 2 shows a typical brain 31P spectrum from a
volunteer. The chemical shift of PCr was set to 0 ppm
in accordance with general conventions. Peaks for
PME; Pi; PDE; PCr; and �, �, and � NTP are shown.
The three NTP peaks consisted of signals from mainly
adenosine triphosphate, although there were contri-
butions from other diphosphate and triphosphate
resonances (14). Phospholipid cell membrane precur-
sors, including phosphocholine (PC) and phosphoryl-
ethanolamine (PE) and sugar phosphates contributed
to the PME resonance, while phospholipid cell mem-
brane degradation products, including glycerophos-
phorylcholine (GPC) and glycerophosphorylethano-
lamine (GPE), contributed to the PDE resonance.

The Table shows results from the spectral analysis
for the individual phosphates and their ratio. The
pregnant women and the control group had no sig-
nificant differences in the relative levels of any of the
cerebral metabolites except for a small, yet significant,
increase in brain pHi. One-way unrelated analysis of
variance for pH showed a significant effect between the
groups (P � .022). A post-hoc analysis using the LSD
test for multiple comparisons showed that women
who were at 6 weeks after delivery had a higher pHi
than that observed all other times (P � .05).

Discussion
During parturition, women are at greater risk of

cerebral events than in the nonpregnant state, as a
result of medical diseases of pregnancy such as pre-
eclampsia (3) or thromboembolic or other vascular
diseases. Their vulnerability to these disorders may be
related to underlying changes in physiological char-
acteristics induced by the pregnant state. For exam-
ple, we have observed that the magnitude of the
reversible decreases in brain size during pregnancy is
increased in preeclampsia (1). Although the mecha-
nisms for these changes are still speculative, the re-
porting of ischemic changes during preeclampsia sug-
gests that a metabolic component may have

FIG 1. Axial T1-weighted image (646/20) shows typical place-
ment of the 70 � 70 � 70-mm voxel inside the brain.
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functional importance. The presence and extent of
metabolic changes in the brain of pregnant women
may be determined noninvasively by using MR
spectroscopy.

Previous studies have shown that the postpartum
brain increases in size and that the return to prepreg-
nant values is slow, taking months rather than days
(1). Several potential mechanisms have been postu-
lated to explain this observation, including the fact
that the nutritional needs of the fetus in utero may be
met by accessing the maternal tissues stores, including
some membrane constituents. Studies of blood con-
centrations of fatty acids, cholesterol, and phospho-
lipids in mother and baby would test this hypothesis
(15). If similar changes in brain cellular composition
occur, cell membrane metabolic studies should help
to elucidate them. The phospholipid precursor PE
and the membrane degradation product GPC are
thought to be of particular significance, and they are

also major contributors to the PME and PDE signal
intensity in the 31P MR spectra of brain, respectively.

We postulated that parturition may induce pro-
longed brain metabolic perturbations. Our data for
control subjects can be compared with MR spectro-
scopic results of other healthy adults. In a mixed
female–male group of 15 volunteers, the mean � SD
values for pH ranged from 7.08 � 0.04 in the poste-
rior brain to 7.07 � 0.03 for the whole brain, and no
specific regional variations in pH were noted (16).
These results are similar to our postpartum values
and would have been considered normal had a further
time frame not been added to our pregnant group,
plus a separate female control group. These addi-
tional groups proved that the 6-week follow-up data
were not an accurate reflection of normal values.

One of the major difficulties with 31P MR spectro-
scopic studies is the comparison of results between
centers. This particularly affects peak areas; even if
variations in pulse sequence design and hardware
caused no differences, variations in analytic tech-
niques can produce large discrepancies in these mea-
surements (12). Furthermore, despite the ease of cal-
culation, reported pH values vary greatly, as
measured by different groups (17).

One study of brain tumors combined the results of
36 healthy men and women (18). Volumes of interest
were centered on the parieto-occipital region of the
brain. The mean pH was 7.04, and alkalinization to
7.09 and higher accompanied the findings of patients
with brain tumors. This alkalinization was explained
by an accumulation of catabolites after cellular pro-
liferation and was considered to result from stimu-
lants (such as vasopressin) activating Na�/H� ex-
change. In a study of schizophrenic patients and 19
control subjects (19), values from the frontal lobe in
healthy men and women were acidic, with pH means
of 6.98 and 6.99, respectively. The other spectra (e.g.,
PCr and Pi) exhibited sex differences. These differ-
ences were considered to provide a basis for sex
differences in neuroleptic drug activity, since the

FIG 2. Localized brain 31P MR spectrum and fit of the data
produced by spectral analysis. Arrow indicates the chemical
shift between PCr and Pi peaks measured to determine the pHi.

Results from the spectral analysis

Result

Pregnant Woman Control Group

At term
(n � 12)

6 Wk after Delivery
(n � 12)

6 Mo after Delivery
(n � 9)

Week 0
(n � 7)

Week 4
(n � 7)

PME (%) 12.03 (1.60) 11.03 (1.88) 11.20 (3.12) 11.38 (1.29) 11.28 (1.48)
Pi (%) 4.59 (1.03) 5.45 (0.95) 4.40 (2.42) 4.90 (0.74) 5.32 (1.55)
PDE (%) 42.68 (4.25) 41.43 (5.19) 42.87 (5.10) 43.25 (4.01) 44.32 (1.78)
PCr (%) 11.99 (1.24) 12.54 (1.95) 11.72 (1.49) 11.42 (0.71) 11.87 (0.60)
�NTP 8.77 (1.66) 8.67 (1.30) 9.70 (2.33) 8.61 (1.07) 8.41 (0.87)
�NTP 11.73 (1.67) 12.44 (2.00) 12.33 (2.97) 11.86 (2.01) 11.58 (1.03)
�NTP 8.22 (2.12) 8.45 (2.07) 7.78 (4.46) 8.58 (1.55) 7.23 (0.67)
PME/NTP 1.59 (0.68) 1.41 (0.53) 2.30 (2.12) 1.37 (0.33) 1.58 (0.28)
Pi/NTP 0.60 (0.27) 0.68 (0.20) 1.10 (1.77) 0.58 (0.10) 0.75 (0.26)
PDE/NTP 5.63 (2.03) 5.23 (1.67) 8.47 (7.63) 5.24 (1.40) 6.18 (0.57)
PCr/NTP 1.58 (0.59) 1.59 (0.53) 2.22 (2.02) 1.37 (0.26) 1.65 (0.14)
PCr/Pi 2.74 (0.67) 2.34 (0.39) 3.35 (1.68) 2.38 (0.44) 2.39 (0.64)
PME/PDE 0.29 (0.05) 0.27 (0.06) 0.26 (0.06) 0.27 (0.04) 0.26 (0.04)
pHi 7.029 (0.038) 7.074 (0.063) 7.016 (0.049) 7.014 (0.010) 7.017 (0.041)

Note.—Data are the mean (SD).
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changes were not observed in the patients. With re-
gard to the pH results and the different regions of
interest used in these studies, the varying percentages
of white matter and gray matter might have contrib-
uted to the measured differences. Tissues in each
regions of interest are not be homogeneous and
within tissues, neurons and their supporting struc-
tures (astrocytes) maintain different basal pH values
of 6.95 and 7.05, respectively (20). These results may
explain why different pH values are observed, even in
healthy control subjects, and why maintaining a
closely defined region of interest is crucial for cross-
sectional and longitudinal studies. In our study, the
region of interest included the basal ganglia and the
posterior parietal region, as these areas are highly
susceptible to physiologic alterations (21). The auto-
mated computer analysis ensured a high degree of
objectivity and reproducibility that was not dependent
on observer responses.

Pregnancy is associated with mild alkalemia sec-
ondary to hyperventilation contributing to a respi-
ratory alkalosis (22). The blood pH is buffered
through renal compensation and decreased bicar-
bonate levels (23). However, within red blood cells,
intracellular acidosis has been demonstrated (24).
Thus, oxygen delivery may be facilitated and possi-
bly central nervous system respiratory stimulation.
In the brain, other acid-base changes occur during
pregnancy; these include an increase in CSF alka-
linity with pH values of 7.33 in the third trimester at
delivery compared with 7.30 in nonpregnant con-
trol subjects (25). Quantitative models to explain
these alterations include Stewart’s approach (26).
Wolfe et al (27) modernized this computer predic-
tion to include hypothalamic-pituitary-adrenal
(HPA)-axis endocrine control during pregnancy
(e.g., vasopressin activity). One of its basic vari-
ables is a reduced CSF volume in pregnancy. The
usefulness of such models are only as accurate as
compartmental size; therefore, the present results
not only supports the development of better models
but also contributes to improved multicompart-
mental models for the overall acid-base status in
the area of interest. In the future, pHi and extra-
cellular pH may be determined with a refinement in
techniques (20).

Large increases in the secretion of sex steroid
hormones and the secretion of peptide hormones
are unique to childbearing. They can change sev-
eral aspects of brain function, and metabolic and
fluid adjustments may be adaptive to cope with
postdelivery behavior. In particular, the role of the
HPA axis needs further investigation because it
possibly acts as a coordinator (28). The persistence
of physiologic changes into the postpartum period
corresponds with findings of acid-base balance in
parturition and a continuation of the respiratory
alkalosis being observed soon after delivery (29).
However, its persistence as long as 6 weeks after
delivery has not been recorded, to our knowledge.
In this present study of lactating and nonlactating
women, pHi in the brain tissue was statistically

significantly more alkaline at 6 weeks after delivery
than during pregnancy or in female controls. pHi is
a fundamental parameter in the regulation of en-
ergy metabolism and cellular activity. Metabolic
changes continued until more than 6 weeks after
delivery, and long-term follow-up in the postpar-
tum period with or without lactation is critical to
physiologic and pharmacologic observations.

Conclusion
In the healthy parturient and nonpregnant women

examined, the only statistically significant metabolic
effect measured to relate to changes in brain size was
a decrease in intracellular acidosis at 6 weeks after
delivery. Although the relative levels of membrane
phospholipids did not change significantly, brain
changes naturally persistent in the long term.
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