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Preoperative Proton MR Spectroscopic Imaging of Brain
Tumors: Correlation with Histopathologic Analysis of

Resection Specimens

Chris Dowling, Andrew W. Bollen, Susan M. Noworolski, Michael W. McDermott, Nicholas M. Barbaro,
Mark R. Day, Roland G. Henry, Susan M. Chang, William P. Dillon, Sarah J. Nelson, and Daniel B. Vigneron

BACKGROUND AND PURPOSE: Tumor progression is often difficult to distinguish from
nonneoplastic treatment response on the basis of MR images alone. This study correlates me-
tabolite levels measured by preoperative MR spectroscopic (MRS) imaging with histologic find-
ings of biopsies, obtained during image-guided resections of brain mass lesions, to clarify the
potential role of MRS in making this distinction.

METHODS: Twenty-nine patients with brain tumors underwent high-resolution (0.2–1 cc)
3D proton MRS imaging and MR imaging before undergoing surgery; 11 had a newly diag-
nosed neoplasm, and 18 had recurrent disease. Surgical biopsies were obtained from locations
referenced on MR images by guidance with a surgical navigation system. MR spectral voxels
were retrospectively centered on each of 79 biopsy locations, and metabolite levels were cor-
related with histologic examination of each specimen.

RESULTS: All mass lesions studied, whether attributable to tumor or noncancerous effects
of previous therapy, showed abnormal MR spectra compared with normal parenchyma. When
the pattern of MRS metabolites consisted of abnormally increased choline and decreased N-
acetyl aspartate (NAA) resonances, histologic findings of the biopsy specimen invariably was
positive for tumor. When choline and NAA resonances were below the normal range, histologic
findings were variable, ranging from radiation necrosis, astrogliosis, and macrophage infiltra-
tion to mixed tissues that contained some low-, intermediate-, and high-grade tumor.

CONCLUSION: This study demonstrated that 3D MRS imaging can identify regions of viable
cancer, which may be valuable for guiding surgical biopsies and focal therapy. Regions man-
ifesting abnormal MR spectra had a mixture of histologic findings, including astrogliosis, ne-
crosis, and neoplasm.

Each year, 15,000 new patients are diagnosed with
primary brain tumors in the United States (1, 2).
Gliomas are the most prevalent histologic finding.
Standard therapies for patients with a central ner-
vous system glioma include maximum safe resec-
tion, external beam radiation, focal radiation with
radiosurgery or brachytherapy, and chemotherapy
(3, 4). Contrast-enhanced MR imaging is the radio-
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logic method of choice for diagnosis, local staging,
and posttherapeutic monitoring of brain tumors. Al-
though this technique is valuable for visualizing re-
gions where the blood-brain barrier has broken
down, it is not specific for tumor, and there are
circumstances when it can provide ambiguous or
misleading results. Examples of this are the devel-
opment of a new mass lesion or an increase in con-
trast enhancement, which, although possibly indic-
ative of tumor progression, may also reflect a
nonneoplastic response to therapy. Although the
differential diagnosis of a new or enlarged focus of
abnormal contrast enhancement is not always crit-
ical to patient management decisions, there are
many clinical and research settings wherein precise
diagnosis is particularly important. These include
management of asymptomatic patients with a new
or enlarged lesion revealed by routine MR imaging
as well as evaluation of response to current and
future therapeutic regimens.
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In vivo MR spectroscopy (MRS) is a technique
that allows noninvasive monitoring of metabolites
within the tissue of interest, and has the potential
for providing information about a lesion’s compo-
sition and response to therapy (5–34). A number of
water-suppressed proton (1H) MRS techniques
have been developed for obtaining spectra from se-
lected regions within the brain (35–40). These pro-
vide either a single-spectrum (single-voxel MRS)
or a multidimensional array of spectra from the re-
gion of interest (multivoxel MRS imaging). In this
study, 3D MRS imaging has been applied to pre-
surgical MR studies of brain tumors. By including
both the abnormal region as well as a substantial
volume of normal parenchyma in the volume of
acquisition, it is possible to compare the spectral
characteristics of abnormal tissue with normal tis-
sue from within the same patient and acquired dur-
ing the same imaging sequence. Volume MRS im-
aging also generally acquires spectra from smaller
voxels than does single-voxel spectroscopy, leading
to a decrease in partial volume effects and im-
proved spatial resolution. Despite its great advan-
tages, 3D MRS imaging has not been widely used
for studies of the brain owing to the lack of com-
mercially available software for acquisition and
analysis of the large 3D arrays.

Since the late 1980s, a number of 1H MRS stud-
ies of patients with brain tumors have been con-
ducted (7, 10–34, 41–55). Even the earliest feasi-
bility studies have shown significant spectral
differences between tumor and normal brain tissue.
These differences in metabolite spectra have been
consistently detected, even for different acquisition
parameters, as techniques have progressed from ob-
taining single-voxel spectra within a tissue volume
as large as 4 3 4 3 4 cm (12, 15, 19, 21, 22, 41–
44) to present techniques that provide hundreds or
even thousands of contiguous voxels at resolutions
of 1 cc or less (45, 51–53, 55). Tumor spectra have
been characterized in part by reduction in signal
intensity of the N-acetyl aspartate (NAA) resonance
at 2.0 ppm (NAA and other N-acetyl-containing
compounds), which has been shown by extract
studies to be present in millimolar concentrations,
mainly within neurons (56–58). Although the ma-
jority of studies have reported increased choline
levels (measured at 3.1 ppm) in tumors compared
with normal brain tissue, the measured levels can
be highly variable presumably because of the le-
sion’s cellular density and to partial volume aver-
aging tumor tissue with normal or necrotic tissues
(21, 53, 59–62). The choline resonance observed
in vivo comprises choline, phosphocholine, acetyl-
choline, phosphotidylcholine, and other choline
compounds. The choline-containing compounds
found in the membranes are immobile and, thus,
invisible to MRS. However, during membrane turn-
over, there may be increased visible amounts of
these compounds. Therefore, the in vivo choline
signal is normally associated with increased mem-
brane turnover or higher cellular density (63). In

human brain tumor studies, tissue necrosis has been
repeatedly characterized as showing abnormally
decreased NAA and choline resonances in a pattern
distinct from both normal parenchyma and tumor
(29–34).

Recent improvements in the spatial resolution
and 3D acquisition of contrast-enhanced MR im-
ages have facilitated the use of volumetric data to
assist in performing image-guided surgery (64, 65).
These systems allow multiple, directed biopsies to
be acquired at the time of surgery and their re-
spective locations recorded and related to the ana-
tomic locations. Analysis of spectral results from
these anatomic locations can then be directly relat-
ed to histologic findings. As tumors are often quite
heterogeneous, the alignment of the spectra to the
biopsy location is very important to assess spec-
troscopy’s role in discriminating among tissue
types. For the present study, 3D MRS imaging was
used 1) to acquire small (1-cm3) voxels to reduce
partial volume averaging, 2) to acquire many vox-
els to allow comparisons between spectra from tu-
mor regions and spectra from normal (MR-re-
vealed) regions, and 3) to center the spectra
retrospectively at each biopsy site, determined via
a stereotactic, 3D image guidance system. Spectral
patterns were correlated with histologic findings of
the same brain tissues by use of image-guided bi-
opsies to assess the role of MRS imaging for dis-
criminating tissue types in patients with gliomas.

Methods

Patient Population

Patients scheduled for surgical resection of a brain mass
lesion, to be performed using the ISG Viewing Wand (ISG
Technologies, Mississauga, Ontario), were recruited into the
study. Informed consent was obtained from all subjects by us-
ing a protocol approved by the Committee on Human Research
at our institution. Twenty-nine adult patients with a preopera-
tive diagnosis of primary or recurrent brain tumor (glioma)
were enrolled in this study. Two patients were studied prior to
two different resections, with the second study performed 6 to
8 months after the first study, for a total of 31 preoperative
MRS examinations. The subjects ranged in age from 18 to 68
years. Twenty-three were male, and six were female. Eleven
resections were for newly diagnosed neoplasms and 20 were
for progression after prior resection, radiation, and/or chemo-
therapy treatments.

MR and MRS Imaging

Contrast-enhanced MR and MRS imaging were performed
during a single examination the day before surgery. The MR
imaging examination was necessary to facilitate the use of the
ISG Viewing Wand during surgery. All MR data were obtained
on a 1.5-T SIGNA (General Electric, Milwaukee, WI) clinical
imaging system by use of either the standard head coil (29/31
examinations) or a surface coil for superficial lesions (2/31
examinations). Manual shimming was done to fine-tune mag-
netic field uniformity across the volume of interest. A pulse
sequence developed in our laboratory incorporating point-re-
solved spectroscopy (PRESS) volume selection, and an 8 3 8
3 8 or a 16 3 8 3 8 phase-encoding matrix was used to
obtain a 3D array of spectra with nominal spatial resolution of
1 cc in 17 minutes (1000/144 [TR/TE]). A spectral bandwidth



AJNR: 22, April 2001606 DOWLING

FIG 1. Screen saver on the ISG workstation correlating to position of biopsy for a patient with oligoastrocytoma. The spectra and
images for this biopsy are shown in Figure 3A. MR images are from a 3D spoiled gradient (SPGR) (34/3/1 [TR/TE/excitations]) with
1.5-mm slice thicknesses.

of 1250 Hz was used with 512 data points. Spatial suppression
pulses were applied in three dimensions to the outsides of the
PRESS volume to reduce spectral contamination. The spectra
were then transferred off-line to Sun SPARC workstations
(Sun Microsystems, Palo Alto, CA) for processing.

Intraoperative Tissue Specimen Collection and Pathologic
Examination

At the time of surgery, multiple biopsy specimens, which
typically measured 2 3 3 3 3 mm3 (less than 2% of the spec-
troscopy voxel volume of 1 cc), were taken for each patient
from within the volume to be resected. Immediately prior to
the removal of a biopsy specimen, a multiplanar MR image of
the origin of the biopsy was saved using the ISG Viewing
Wand (Fig 1). Each tissue sample was then taken with small
surgical forceps and labeled and handled separately. Biopsy
specimens were fixed in formalin after removal and were sub-
mitted for routine hematoxylin eosin pathologic examination

in addition to immunohistochemistry for glial fibrillary acidic
protein and a macrophage marker (CD68).

The surgical biopsy specimens taken for this study were
examined by a neuropathologist. The percentage of tumor, ne-
crosis, and other tissue, which included white matter, gray mat-
ter, astrogliosis, and macrophage infiltration, were estimated
for each biopsy sample and recorded. Additionally, the pres-
ence of astrogliosis was noted and the tumor grade assigned
using the World Health Organization II criteria.

MRS Data Processing

The spectra were automatically phased, frequency aligned,
and baseline corrected, and spectral parameters were calculated
using software developed in this laboratory. Choline, creatine
and NAA peak areas were estimated by integrating the reso-
nances at 3.2, 3.0 and 2.0 ppm, respectively. Normal values
for each metabolite peak area were determined by averaging
values in 10 to 20 voxels selected within brain parenchyma
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FIG 2. A, Axial image from a contrast-enhanced SPGR 3D volume dataset (34/3/1) of a patient with an oligoastrocytoma. The locations
for which spectra are reconstructed are shown by the grid.

B, Spectral array (16 3 8 3 8 [phase encodes], 1000/144/1) corresponding to the grid shown in the image of A. Note the high NAA
levels and moderate choline and creatine levels in the spectra corresponding to the normal MR regions (right side of spectral array).
Note the very high choline and low NAA in portions of the contrast enhancement and surrounding tissue (dashed lines) and the lower
metabolites in adjacent tissue (double lines).

with a normal MR appearance, usually in the hemisphere con-
tralateral to the primary tumor. Datasets were excluded when
there was poor shimming such that the choline and creatine
peaks were not resolvable, when the signal to noise of the
spectral peaks was below 5:1, or when the water or lipid sup-
pression was inadequate for accurate removal of the baseline
below the peaks of interest.

The volume MRS imaging dataset was then resampled to
center a single 1 3 1 3 1 cm3 voxel at each biopsy site on
the basis of coordinates obtained at surgery. The metabolite
spectrum of this voxel was analyzed, and the ratios of choline/
NAA, choline/normal choline, and NAA/normal NAA were
calculated and correlated to the histologic findings for each
biopsy specimen. In order to resample the spectroscopy with
a voxel centered precisely at each biopsy site, it was necessary
to identify the coordinates of the biopsy site within the MRS
imaging dataset. It was assumed there was no motion of the
head and brain between the time of the MR image acquisition
and the subsequent MRS imaging component of the exami-
nation. During surgery, the biopsy locations were recorded on
the MR images. Coordinates of these locations were deter-
mined by visually aligning the MR images to the recorded
biopsy location image.

For the MRS imaging examinations (three of 31) that were
done at a different time than preoperative MR imaging, the
volume MR images acquired in the MRS imaging examination
were retrospectively aligned, using registration software de-
veloped in this laboratory (66), to the preoperative volume MR
images to allow the spatial correlation of the biopsy site co-
ordinates to the MRS imaging data.

Results
Good-quality MRS imaging data were obtained

from 28 of the 31 MR examinations performed as
part of this study. The remaining three examina-
tions yielded poor spectral quality, as defined in the
Methods section, and were excluded from the anal-
ysis. From the 28 MR examinations that had good-
quality spectra, a total of 86 biopsy specimens were
obtained. Correlations with the resampled spectros-

copy voxels centered at the biopsy sites were pos-
sible for 79 of the biopsies. The remaining seven
biopsy specimens were from regions outside the
MRS imaging volume.

Considerable heterogeneity was present within
the tissues of the surgical specimens, which typi-
cally measured 2 3 3 3 3 mm3 (less than 2% of
the nominal spectroscopy voxel resolution of 1 cc).
Some specimens were solid, densely cellular neo-
plasms; others were mostly necrotic, with a small
percentage by volume of tumor cells. Although all
of the patients had at some point a diagnosis of
tumor, two of the 28 examinations had no histolog-
ically identifiable tumor from the biopsies obtained
in this study. Tumor later progressed in both of
these patients. For the 26 patients (28 resections)
included in the MRS analysis, histologic grading
demonstrated the following breakdown of the pa-
tient population: grade I, one astrocytoma; grade II,
three oligoastrocytoma, one astrocytoma; grade III,
five anaplastic oligoastrocytoma, five anaplastic as-
trocytoma, one anaplastic ependymoma; and grade
IV, 10 glioblastoma multiforme (GBM). Ten of the
tumors were newly diagnosed, and thus, untreated.

Although the spectra from normal-appearing
brain tissue were similar in terms of their choline,
creatine, and NAA levels, spectra from the mass
lesions all showed a reduction in the NAA reso-
nance, and many showed an elevation in the cho-
line resonance. This is illustrated by the case of
oligoastrocytoma, shown in Figure 2, wherein a
contiguous region of six voxels had spectra with
these characteristics.

There were cases in which the MR imaging re-
sults were very similar for different biopsy speci-
mens, but the histologic and spectral results were
quite different. In the case shown in Figure 3, the
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FIG 3. Contrast-enhanced SPGR (34/3/1) MR and MRS (16 3 8 3 8, 1000/144/1) data from a patient with oligoastrocytoma.
A, MR location and the spectrum for a biopsy that yielded 75% oligoastrocytoma. Note the elevated choline (1.8 times normal) and

absent NAA levels.
B, MR location and the spectrum for a biopsy that correlated with the pathologic finding of necrosis, astrogliosis, and white matter.

Note the minimal choline, creatine and NAA resonances in this spectrum. Although the image intensity is similar to the region in A,
significant spectral differences were observed with elevated choline/normal choline levels correlated with the presence of tumor.

Normalized metabolite levels in different tissues

Tissue No.
Cho/Normal

Cho
NAA/Normal

NAA

90% Necrosis
90% Tumor
90% Parenchyma (w/o AG)
AG w/o tumor
All samples

4
19
4

19
79

0.5 6 0.9
1.6 6 0.7*
0.7 6 0.3
0.7 6 0.5
1.1 6 0.7

0.2 6 0.3
0.2 6 0.4
0.4 6 0.1
0.1 6 0.2
0.2 6 0.3

Note.—Cho, choline; NAA, N-acetyl aspartate; AG, astrogliosis.
* Significantly higher than all other groups (P , .05).

two biopsy locations shown each have partial con-
trast enhancement within the spectral voxel. How-
ever, the histologic analysis from one biopsy spec-
imen demonstrated a high percentage (75%) of
oligoastrocytoma cells, whereas the other biopsy
specimen had astrogliosis and white matter, but no
definite tumor. Choline was highly elevated in the
spectrum with a high percentage of tumor (1.8
times normal) and was reduced (0.7 times normal)
in the spectrum centered on the biopsy site, with
no tumor noted after histologic analysis. NAA was
very low for both of these spectra.

Histologic specimens obtained as part of this
study also demonstrated differences in the percent-
age of viable tumor from the different sites within
the same patient. The choline resonance was most
prominent in the regions with a high percentage of
tumor and progressively lower in the moderate- and
low-percentage tumor locations. This suggests that
an elevation of tumor cell density correlates with
an elevation in choline levels, and is demonstrated
in Figure 4, for a patient with a newly diagnosed
GBM.

A further general finding was that regions of as-
trogliosis/necrosis correlated with spectra with low
NAA (NAA/normal NAA 5 0.13 6 0.16) and cho-
line levels ranging from nondetectable to near-nor-
mal levels. The mean choline/normal choline ratio
for samples identified as having astrogliosis, but no
tumor, was 0.69 6 0.53.

In an example in which the histologic analysis
comprised low cellularity white matter, the MRS
imaging data demonstrated low but observable cho-
line, creatine, and NAA resonances. The NAA peak

seems to indicate normal brain tissue, either gray
matter or white matter. Although it is present in
spectra that contain white matter, such as in Figure
4, it is not present in the other tumor and necrotic
spectra.

An overall assessment of the metabolite levels
for different tissues is given in the Table and Figure
5. These demonstrate the low NAA levels found
throughout the abnormal tissues sampled by biop-
sy. All tissue groups in which biopsies were per-
formed contained significantly lower NAA than did
the normal-appearing white matter. Choline, on the
other hand, was significantly elevated in those bi-
opsies that were mainly tumor. Figure 5 illustrates
the good separation between biopsies with greater
than 90% tumor and biopsies without any tumor
and between these groups and normal regions de-
termined on the basis of normalized choline and
NAA levels.

When MRS showed choline elevated two stan-
dard deviations above normal and NAA decreased
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FIG 4. Multiple MR spectra (16 3 8 3 8, 1000/144/1) and corresponding images (contrast-enhanced SPGR [34/3/1]) centered on
biopsy locations for a patient with a newly diagnosed GBM. Higher normalized choline levels were observed in the location of the biopsy
with 90% tumor compared with others of lower percentages. (WM 5 white matter)

FIG 5. Metabolite levels in different tissues. The ellipses show
the mean 6 SD. for each tissue type. Abnormal regions have
significantly lower normalized NAA, whereas tumor regions also
have significantly increased normalized choline levels.

two standard deviations below normal levels, the
histologic specimen was invariably tumor (21/21).
When the choline resonance was larger than the
NAA resonance and larger than the normal choline
levels, histologic findings were usually tumor (32/
37 [85%]). When MRS demonstrated choline/nor-
mal choline ratios below the normal level and NAA
decreased below normal levels, the histologic spec-
imen ranged from radiation necrosis, astrogliosis,
and macrophage infiltration to mixtures containing
low-, intermediate- and high-grade tumor. Only
44% (18/41) of these specimens contained any his-
tologically confirmed tumors. In the newly diag-
nosed, untreated patients, 89% of spectra with this
pattern were histologically confirmed tumors. In
fact, both treated patients and patients with GBMs
tended to have lower choline levels than those with
untreated or lower-grade tumors. Patients with a di-
agnosis of oligoastrocytoma were significantly
more likely to have elevated choline than were the
other patients (P,.006 [x2 analysis]).

Discussion
MR imaging is very useful for identifying path-

ologic abnormalities, but has limitations when eval-
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uating gliomas. One such limitation of convention-
al MR imaging is that tumor and radiation necrosis
may appear very similar to enhancing masses. In
such cases, the MRS imaging data correlated more
closely with histologic findings and provided a tool
for assessing tumor presence and extent. Abnormal
MR regions had consistently lower NAA than in
normal-appearing tissue, which is consistent with
the theory that NAA is found primarily in neurons,
and that tumor and necrotic and reactive tissues all
demonstrate an abnormally low neuronal cell den-
sity. Tumor regions had significantly increased cho-
line and decreased NAA compared with normal tis-
sue. Lower levels of choline may still be associated
with a mixture of tumor and necrosis. Although the
highest levels of choline were found in grade II and
III gliomas, both treated patients and patients with
GBMs tended to have lower choline levels. Spectra
from regions with astrogliosis showed low NAA
but observable levels of choline and creatine. These
results are consistent with those found from single-
voxel spectroscopy (12, 15, 19, 41–44), MRS im-
aging (53–55), high-resolution nuclear MR imag-
ing (59–62), and magic-angle spinning MRS of
biopsy samples (67–69). In this study, however, 3D
MRS imaging allowed assessment of multiple,
small measurements from individual patients and,
combined with the image guidance system, allowed
the spectra and the biopsy results to be centered in
the same locations, reducing effects from partial
voluming and heterogeneity. Although extract stud-
ies can yield more distinct spectral differences and
allow the comparison of histologic analysis and
spectroscopy from the same small tissue sample,
they depend upon the most appropriate tissue being
sampled and can be adversely affected by postex-
traction tissue changes. Also, although a tissue ex-
tract may be performed at the time of initial biopsy
or at surgery, it is not practical or desirable for
routine imaging, treatment planning, and treatment
follow-up. For such cases, an in vivo technique is
required. This study showed that in vivo 3D MRS
imaging could identify regions of tumor and dis-
criminate them from normal tissue.

Many of the subjects had very heterogeneous tis-
sue, shown by both histologic analysis and spec-
troscopy, underlining the need for accurate diag-
nosis before performing targeted therapies.
Although the spectra did not always correlate with
the biopsies, it must be remembered that the his-
tologic analysis is performed on a fraction of the
biopsy tissue, which is in turn only a few percent
of the volume of the spectral voxel. This difference
in size was especially problematic near the borders
of different types of tissues. Another limitation of
this type of analysis was that the number of biopsy
samples taken was relatively small, generally less
than five per patient, and they were not always tak-
en from the most spectrally abnormal tissue.

This study shows the feasibility of obtaining
MRS imaging data during the same sitting as a
standard preoperative MR examination, and sug-

gests that 1H MRS imaging may be useful for guid-
ing stereotatic biopsies. As the number of biopsies
taken per patient is typically small, sampling error
may occur, leading to an inaccurate tumor grade
for the patient. As tumor grade is a strong indicator
of clinical progression, treatment decisions often
heavily rely on this information. By guiding ste-
reotactic biopsies to the regions with low NAA and
high choline, sampling error may be reduced and
better diagnoses determined. Proton MRS imaging
is also likely to contribute in treatment planning,
particularly for focal treatments, and for the as-
sessment of treatment efficacy in follow-up. As 1H
MRS was more closely correlated with histologic
findings than were MR images, treatment planning
should take these data into account in defining the
target for focal therapy.

Conclusion
This study showed that tissues appearing similar

on conventional MR images may have different
spectral characteristics. Abnormal metabolite levels
were found in a range of histologic specimens, in-
cluding astrogliosis, necrosis, and neoplasm. The
presence of elevated choline and decreased NAA
correlated with tumor histologic findings and may
be used in distinguishing regions of viable cancer
from normal and other noncancerous tissue, such
as necrosis and astrogliosis. This suggests that 3D
MRS imaging may be valuable for guiding surgical
biopsies and planning focal therapies.
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