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Tracking Tumor Growth Rates in Patients with
Malignant Gliomas: A Test of Two Algorithms

Sean M. Haney, Paul M. Thompson, Timothy F. Cloughesy, Jeffry R. Alger, and Arthur W. Toga

BACKGROUND AND PURPOSE: Two 3D image analysis algorithms, nearest-neighbor tissue
segmentation and surface modeling, were applied separately to serial MR images in patients
with glioblastoma multiforme (GBM). Rates of volumetric change were tracked for contrast-
enhancing tumor tissue. Our purpose was to compare the two image analysis algorithms in
their ability to track tumor volume relative to a manually defined standard of reference.

METHODS: Three-dimensional T2-weighted and contrast-enhanced T1-weighted spoiled
gradient-echo MR volumes were acquired in 10 patients with GBM. One of two protocols was
observed: 1) a nearest-neighbor algorithm, which used manually determined or propagated
tags and automatically segmented tissues into specific classes to determine tissue volume; or 2)
a surface modeling algorithm, which used operator-defined contrast-enhancing boundaries to
convert traced points into a parametric mesh model. Volumes were automatically calculated
from the mesh models. Volumes determined by each algorithm were compared with the stan-
dard of reference, generated by manual segmentation of contrast-enhancing tissue in each cross
section of a scan.

RESULTS: Nearest-neighbor algorithm enhancement volumes were highly correlated with
manually segmented volumes, as were growth rates, which were measured in terms of halving
and doubling times. Enhancement volumes generated by the surface modeling algorithm were
also highly correlated with the standard of reference, although growth rates were not.

CONCLUSION: The nearest-neighbor tissue segmentation algorithm provides significant
power in quantifying tumor volume and in tracking growth rates of contrast-enhancing tissue
in patients with GBM. The surface modeling algorithm is able to quantify tumor volume re-
liably as well.

MR imaging provides noninvasive, high-quality
images of neuroanatomy and disease processes.
Through its ability to detect contrast in soft tissues,
MR imaging is well suited to monitor and evaluate
cerebral tumors as they develop and respond or, as
the case may be, fail to respond to therapy. An
algorithm capable of reliably and accurately track-
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ing changes in tumor volume would be of value as
an adjunct marker in following up patients with
cerebral tumors. Such a method would have direct
application in therapy trials in which tumor volume
quantification could be used to measure response.
Image analysis algorithms may also be used to fa-
cilitate the planning of radiation therapy and
surgery.

The ability to track change in tumor contrast en-
hancement is important. There is no method pres-
ently in widespread use to quantify tumor volume.
A method currently used by the Eastern Coopera-
tive Oncology Group and the Radiation and Treat-
ment Group to determine tumor response to treat-
ment relies on measuring the area of tumor
enhancement in a single MR section (1). Response
in irregularly shaped tumors is difficult to estimate.
The method has difficulty in detecting small le-
sions, poorly enhanced lesions, and multiple le-
sions. This method also relies on the hypothesis
that the largest area is an accurate adjunct marker
for tumor volume. Clarke et al (1), however, con-
cluded that this was not the case.
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FIG 1. Examples of MR images that may
be used for segmentation.

A, Contrast-enhanced T1-weighted im-
age (500/8/2).

B, T2-weighted image (6000/14/2).

Much effort has been devoted to the develop-
ment and testing of semiautomatic and automated
tissue segmentation algorithms as well as to the op-
timization of scanning protocols (2). Factors that
can determine the quality of segmented images and
the feasibility of using a specific algorithm have
been discussed often (3). For example, the time re-
quired for an algorithm to generate volumes for
specific tissues is important in a clinical setting (1).
The time required for segmentation decreases as
the segmentation process becomes less operator de-
pendent. Decreasing the amount of time needed for
segmentation is desirable as long as accuracy is not
sacrificed. Stereotaxic space, a coordinate system
applied across scan data to relate data from differ-
ent patients and different time points in a common
3D space, has been used to advance segmentation
techniques. Bayesian segmentation models provide
additional advantages, drawing on empirical infor-
mation as to the location of tissue classes in ste-
reotaxic space (4).

As part of a comprehensive longitudinal study of
patients with high-grade gliomas, we analyzed the
performance of two different algorithms in their
ability to segment tissue (eg, contrast-enhancing tu-
mor) and to follow or track changes in tumor tissue
over time. The term modeling, as used in the lit-
erature and in this study, may be defined as the
creation of digital representations of tissue ele-
ments whose shape and volume can be quantified
using computer algorithms for the purpose of track-
ing volumetric changes in tissue. Two 3D image
analysis algorithms, one a nearest-neighbor–based
tissue segmentation algorithm, the other a surface
modeling algorithm, were applied to serial MR im-
ages. The algorithms operate on different principles
to determine tumor volume: the nearest-neighbor
approach uses manually identified tag points to as-
sist in classifying tissue types while boundary and
volumes are calculated automatically. The surface
modeling algorithm relies on manual segmentation
while volume determination is automated. Volumes
of contrast enhancement and rates of volumetric

change were determined by both algorithms. The
tissue segmentation algorithm was used to create
3D maps of peritumoral edema, cystic compart-
ments, and CSF volumes, as well as to track chang-
es in adjacent white and gray matter.

The goal of this study was to compare the au-
tomatic tissue segmentation and surface modeling
algorithms with manually segmented maps, which
served as a standard of reference, to understand the
advantages and limitations of these two approaches
to tissue volume analysis in terms of their ability
to measure tumor growth. Finally, we review the
uses of 3D structural maps in neurooncology and
the potential for automated registration to acceler-
ate tissue classification and subsequent image
analysis.

Methods
The subjects consisted of 10 patients with pathologically

confirmed glioblastoma multiforme (GBM). Patients ranged in
age from 4 to 54 years (mean age, 40.0 6 14.7 years) and
were examined with MR imaging between two and six times.
Before or during the scan interval, patients underwent surgery
and received chemotherapy or radiation therapy or a combi-
nation of both.

Image Protocol

MR images were acquired using a 1.5-T system. The images
consisted of contrast-enhanced T1-weighted sequences with
parameters of 550/8/2 (TR/TE/excitations), a 3-mm slice thick-
ness with no interslice gap, a 256 3 256 matrix, and a 25-cm
field of view, and T2-weighted sequences with parameters of
6000/14,126/2, a 3-mm slice thickness with no interslice gap,
and a 256 3 256 matrix (Fig 1). Images were subsequently
aligned and segmented on 180 MHz R10000 SGI workstations.
Image volumes were aligned into Talairach stereotaxic space
using six-parameter rigid transformation (5). Alignment was
performed across time and across T1- and T2-weighted se-
quences. Both automated and manually assisted registration
software, developed at the UCLA Laboratory of Neuro Im-
aging, was used for the alignment (6). Images were manually
aligned to a population-based average brain data set (7, 8). The
algorithms were applied independently to the patients’ images.
Since application of each algorithm was independent of the
others and of previous or subsequent results, tumor volumes
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FIG 2. This T1-weighted image (500/8/2) illustrates the selection
of tag points by an operator. The accuracy of segmentation is
dependent on tag points representing the various tissue types
being segmented.

were unaffected by the order in which the algorithms were
applied.

The nearest-neighbor approach, using manual or propagated
tagging, is capable of automated segmentation and volume de-
termination. The following protocol was used for nearest-
neighbor tissue segmentation: 160 tags were selected (170
when there was a cystic compartment), representing points in
white matter, gray matter, CSF, background (extracranial re-
gions of the image), tumor, edema, and cystic components
(when present) (see Fig 2). Both direct tagging and tagging
via the propagation of tags through scan series were used. In
other words, tissue samples could often be identified on later

scans by anatomically registering the scan with previously la-
beled data sets from the same patient. All images were RF
corrected before segmentation to eliminate any signal fluctu-
ations due to magnetic field distortions in the scanner (9). Seg-
mentation was performed through the use of population-based
tissue maps. These maps, containing probabilistic information
on tissue locations in stereotaxic space, were automatically
aligned with the scan data and adjusted for herniation effects
with nonlinear registration. The population-based tissue maps
were used to determine a gaussian function, a unimodal bell-
shaped probabilistic distribution reflecting the intensities of
specific tissue classes at each time point in the scan series. A
nearest-neighbor algorithm was then used to differentiate tissue
types, and its accuracy was confirmed by tagging individual
points in each anatomic region. Tissue maps for tumor, peri-
tumoral edema, white and gray matter, CSF, and cystic com-
partments were then generated (see Fig 3). These tissue maps
were manually adjusted to delineate class boundaries better,
and the results of automated and manually segmented stan-
dards of reference were compared in terms of their ability to
measure absolute volume and track changes in each MR se-
quence. The procedure was repeated for subsequent images in
the patient series by rigidly aligning each subsequent scan to
the primary scan with Automated Image Registration software
(6). The process of registration, tagging, and generating a seg-
mentation map takes approximately 10 to 12 minutes per scan.
The time needed to adjust boundaries varies significantly; it
may take anywhere from no time to 15 minutes.

For the surface modeling algorithm, the following steps
were performed: first, using a graphic user interface, a single
image from a multispectral image set was displayed (Fig 4A).
An operator defined the boundaries of the tumor. Accuracy of
boundary delineation was enhanced by the operator’s ability to
increase the image scale and vary image intensity. The traced
boundary generated a large number of sample points. The al-
gorithm then converted the set of traced points into a tiled
parametric mesh model. The algorithm does this by uniformly
redigitizing the points at each level in the adjacent sections
and reconstructing the surface using triangular tiles (10) (Fig
5). The principle is analogous to stretching a net over an ob-
ject. Volumes are then determined from the mesh models. The
time required to generate volumes varies with the size and
complexity of the border being defined but may range from a
few minutes to 40 minutes. Results from the surface modeling
algorithm were also compared with manually defined standards
of reference.

The manually segmented standard of reference was gener-
ated by an experienced operator who defined the tumor bound-
aries. By using a graphic user interface, an image from the
multispectral data set was displayed. An operator overlaid col-
or, in shades of red or green, on pixels of the selected tissue
type, consisting of contrast-enhancing tissue in the case of this
study (Fig 4B). The intensity of the overlaid label and of the
underlying image may be adjusted so as to improve accuracy
in defining a tissue class. The time required to manually seg-
ment contrast-enhancing tissue varies from several minutes to
45 minutes depending on the nature and complexity of the
tumor (see Fig 6). It is important to note that any method based
on operator-defined tumor boundaries is subjective. The Table
provides a summary of the two algorithms and the standard of
reference.

Data Analysis

Absolute and serial changes in tissue parameters for volu-
metric results from the tissue segmentation and the surface
modeling algorithm were compared using manual and pro-
gressively more automated methods. A Pearson linear corre-
lation coefficient was derived to determine the significance of
the volume quantification and growth rate determination.
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FIG 3. The segmentation maps illustrated in this figure are representative of the types of maps generated by the nearest-neighbor
algorithm. They were taken at a variety of levels from more than one patient.

A, White matter.
B, Gray matter.
C, CSF.
D, Tumor contrast enhancement (arrow).
E, Edema (arrow).
F, Cystic compartment (arrow).

Validation

Manually segmented images served as a standard of refer-
ence against which the performance of the algorithms were
judged. As in the study of Velthuizen et al (11), a single op-
erator-generated standard may be used as a standard of refer-
ence to assess the performance of segmentation algorithms. In
this study, intra- and intersubject accuracy and reproducibility
were maximized by repeated image assessment.

Results

Enhancement Volumes
In all, 42 images from 10 patients with histolog-

ically confirmed GBMs were analyzed using the

nearest-neighbor algorithm. Tumor enhancement
volumes as determined by the nearest-neighbor al-
gorithm were highly correlated with volumes de-
rived directly from manually segmented images,
the standard of reference (r2 5 .99, see Fig 7A).
The volumes of enhancement as determined by the
nearest-neighbor algorithm were on average 9.4%
less than those of the manually defined standard
(mean standard of reference, 20.3 cm3 6 22.9;
mean algorithm, 18.4 cm3 6 22.1). However, this
underestimation reflected a mean difference of
only 1.9 cm3 (SD difference of 0.8). Twenty-nine
T1-weighted contrast-enhanced images were ana-
lyzed using the surface modeling technique. Tumor
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FIG 4. A, This contrast-enhanced T1-weighted image (500/8/2) illustrates the tumor boundary defined by an operator as part of the
surface modeling algorithm approach to volume analysis.

B, This figure illustrates the process of generating the manually defined standard of reference. An operator overlays a chosen color
on a specific tissue type (contrast-enhancing tumor tissue in the case of this study). Accuracy is improved by varying the image and
color overlay intensity and magnitude. Despite techniques to improve accuracy, the process remains subjective.

FIG 5. The basic principles behind the surface modeling algorithm, which uses a parametric mesh approach, are as follows: an operator
defines the structure of interest by tracing points on a 2D MR slice, the algorithm uniformly redigitizes the points at each level of the
image for the region of interest, the points from adjacent sections are then sewn together using triangular tiles, and the result is a tiled
parametric mesh model from which volumes are calculated.

enhancement volumes as determined by the surface
modeling algorithm were also highly correlated
with the manually segmented standard of reference
(r2 5 .94; mean standard of reference, 23.4 cm3 6
27.1; mean surface modeling, 23.4 cm3 6 31.5; SD
difference, 4.4) (see Fig 7B).

Growth Rates
Growth rates were calculated in terms of halving

times or doubling times for change in tumor en-
hancement volumes according to the following for-
mula:

t(ln 2)
T* 5

ln(V/V )o

where T* is the doubling time or halving time, t is
the interval time in days, and Vo and V are the
volumes at the onset of the interval and at the end
of the interval period, respectively.

Growth rates are sensitive enough to determine
response to treatment (12). The growth rates deter-
mined by the nearest-neighbor algorithm were
highly correlated with the manually defined growth
rates (n 5 21, r2 5 .96; mean standard of reference,
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FIG 6. This figure shows the change in
contrast enhancement and the corre-
sponding growth rates computed from a
manually defined standard over a 250-day
period in a 44-year-old subject. By gener-
ating volumetric data across time, the pa-
tient may be tracked and response or non-
response to therapy documented.

Comparison of nearest-neighbor segmentation, surface modeling, and the manually defined standard of reference in terms of operator
input and accuracy

Parameters Nearest-neighbor Algorithm Surface Modeling Algorithm
Manual Definition:

The Standard of Reference

Operator dependency Operator chooses tag points; less
time-consuming than manual
segmentation.

Operator defines boundary; more
time-consuming than nearest-
neighbor.

Operator defines tumor areas; meth-
od is more time-consuming than
nearest neighbor.

Reliability/accuracy A reliable stable algorithm; accura-
cy dependent on tag points and
tissue contrast.

Similar to manual segmentation. Operator dependent; image scale
and intensity may be altered to
improve accuracy.

Potential for acceleration
of process

Automatic alignment and propaga-
tion of tag points to subsequent
scans may substantially reduce
time required.

Limited time savings with current
design.

Volume calculations are automatic;
since the method is based on op-
erator input, and operator input is
by far the most time-consuming
step, little time savings is
possible.

Mechanism Generation of gaussian mixture dis-
tribution reflecting the intensities
of specific tissue classes; differ-
entiation of the tissue types via
nearest-neighbor algorithm.

Traced points are uniformly redigi-
tized at each level of the scan;
triangular tiles are formed be-
tween adjacent levels; the result
is a tiled parametric mesh model.

An experienced operator defines tu-
mor with the assistance of a
graphic user interface; shades of
color are overlaid on selected
regions; volumes are calculated
automatically on the basis of the
overlaid label.

Strengths Use at present is feasible; potential
uses include multicenter therapy
trials; improvements in automa-
tion will further decrease time
required.

Detailed tracking of focal change;
use in modeling of tumor growth
or selection of specific rapidly
growing tumor regions for biopsy
and histopathologic classification.

Accurate and may identify tumor
volumes; may be used to test the
reliability of other tumor volume
quantification methods.

9.7 days, SD, 99.8 days; mean algorithm, 8.5 days,
SD, 125.8 days) (see Fig 8A). The growth rates as
determined by the surface modeling algorithm were
not significantly correlated with manually defined
growth rates (n 5 21, r2 5 .45; mean standard of
reference, 9.7 days, SD, 99.8 days; mean surface
modeling algorithm, 59 days, SD, 117.3 days) (see
Fig 8B).

Discussion
In an effort to improve reliability and to develop

more automated approaches to tumor volume quan-

tification, various approaches have been developed.
Pattern recognition is a term often used to describe
the decision-making process of specific segmenta-
tion techniques (13). Pattern recognition methods,
which include a set of promising segmentation al-
gorithms, are divided into those that rely on oper-
ator input (supervised) and those that do not de-
pend on operator input (unsupervised). Bezdek et
al (4) present a thorough review of MR image seg-
mentation approaches based on statistical pattern
recognition. Supervised methods may be based on
a number of algorithms that depend on human as-
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FIG 7. A, The nearest-neighbor generated enhancement volumes (cm3) are highly correlated (r2 5 .99) with the manually defined
standard. Though not able to duplicate the volumes as determined manually, the nearest-neighbor algorithm is systematic and accurate
in its ability to quantify tumor volume based on contrast-enhancing tissue volumes.

B, The surface modeling algorithm generated enhancement volumes (cm3) are also highly correlated (r2 5 .94) with the manually
defined standard. It is unable to separate nonenhancing necrotic areas from surrounding enhancing areas and cannot generate volumes
based on noncontiguous lesions. Therefore, the surface modeling algorithm has a tendency to overestimate and underestimate en-
hancement volumes to a greater degree than does the nearest-neighbor algorithm.

FIG 8. A, Growth rates (in days) measured in terms of halving times and doubling times for the nearest-neighbor algorithm are highly
correlated with the growth rates for the manually defined volumes (r2 5 .96).

B, Growth rates (in days) generated from the surface modeling algorithm were not highly correlated with growth rates generated from
the manually defined standard of reference (r2 5 .45).

sistance in assigning value to data sets: labeled
maximum, nearest-neighbor, and feed forward neu-
ral network are examples of such algorithms. Ar-
tificial neural networks, which are used for super-
vised pattern recognition, have been tested and
studied (14, 15). Unsupervised methods may be
based on such algorithms as the unsupervised
maximum likelihood method and the hard and
fuzzy c–means algorithms (4). Surface reconstruc-
tion, another supervised segmentation technique, is
based on an operator defining the boundary of a
structure. The surface modeling algorithm, a sur-
face reconstruction algorithm, has been successful-
ly applied to determine dynamic growth patterns

(16). As part of this study we chose to compare a
nearest-neighbor algorithm (a supervised pattern
recognition approach) and a surface modeling al-
gorithm (a surface representation approach).

The nearest-neighbor tissue segmentation algo-
rithm and the 3D surface modeling algorithm are
both capable of accurately and reliably determining
the volume of contrast enhancement in malignant
gliomas. Contrast-enhanced volumes determined
through the tissue segmentation algorithm were
highly correlated with measurements from manu-
ally segmented images (r2 5 .99). Nonetheless, the
volumes of enhancement as measured by the al-
gorithm were on average 9.4% less than those of
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the manually defined volumes. The surface mod-
eling algorithm volumes were also highly correlat-
ed with the manually defined volumes (r2 5 .94).
These approaches may provide an accurate quan-
titative approach to following tumor change in in-
dividual patients and in groups of patients (see Fig
6). In addition, the structural models generated by
these methods represent 3D and 4D structural maps
that may be correlated with data from other tech-
niques for direct comparison or partial volume cor-
rection (3).

The nearest-neighbor algorithm has been re-
viewed in the literature and used in prior studies
(1, 2, 4, 13, 17). In a recent study by Kaus et al
(18), a nearest-neighbor algorithm accurately de-
termined volumes of meningiomas and low-grade
gliomas. The nearest-neighbor algorithm, one of
the algorithms reviewed by Bezdek et al (4), offers
certain advantages while conceding certain weak-
nesses. Some of its advantages are as follows: 1) it
provides stable segmentation (4, 13, 16, 17, 19); 2)
it can detect anatomically relevant structures in ar-
eas in which more automated algorithms have dif-
ficulty (10, 16); 3) it is robust to changes in scanner
protocol (TR/TE), including changes in the noise
level of the images; and 4) it is one of the quickest
algorithms in terms of operator input and execution
time (4, 17).

The surface modeling algorithm has been used
previously to map growth patterns in children (16),
to detect asymmetry in cortical patterns, and to an-
alyze corpus callosum morphology in schizophren-
ic patients (20). The algorithm sets up point-by-
point correspondences between surfaces, enabling
change to be tracked on a point-by-point basis over
time (see Fig 7). The models generated are highly
detailed, the level of detail being greater than that
provided by the tissue segmentation approach.
Though the level of detail provided may exceed
that required to follow up patients accurately and
determine whether they are responding to therapy,
it may prove useful in creating structural models
highlighting focal change, which may be analyzed
to determine the effects of multiple therapies (eg,
whether the therapies act synergistically or antag-
onistically). Lopez et al (19) have developed a
model-based approach to determine the interactions
of multiple cancer therapies in mice. The surface
modeling algorithm might warrant the time invest-
ment needed to elucidate the effects of multiagent
therapies on human gliomas.

Each algorithm is well suited for quantifying
changes in contrast enhancement tumor tissue
while the nearest-neighbor algorithm is also reli-
able in tracking change in growth rates. It is worth
noting that contrast enhancement is not the tumor
itself but rather the local breakdown of the blood-
brain barrier with subsequent extravasation of con-
trast agent into the surrounding parenchyma. As
such, contrast enhancement serves as an adjunct
marker for tumor volume. The enhancement vol-
umes generated by tissue segmentation were highly

correlated with the manually defined volumes,
more so than the volumes generated by surface
modeling. There are two reasons for this: 1) the
tissue segmentation algorithm can track contrast
enhancement while excluding nonenhancing areas;
the surface modeling algorithm generates a volume
for the entire region, including nonenhancing ne-
crotic areas enclosed within the defined surface
boundary; and 2) multiple lesions can be detected
by the tissue segmentation algorithm while the sur-
face modeling algorithm detects only a single de-
fined contiguous volume. For these two reasons,
the surface modeling algorithm has a tendency to
overestimate and underestimate to a greater extent
than does the tissue segmentation algorithm, the de-
gree to which depending on the tumor complexity.
The tendency toward greater variability of the sur-
face model as compared with that of the nearest-
neighbor algorithm accounts for the inability to
correlate the growth rates derived from the surface
modeling algorithm significantly with those derived
from manual segmentation. A determination of
growth rates depends on use of the natural log of
the quotient of the ending and onset volumes. In-
creased variations in the ending and onset volumes
are magnified when taking the natural log of this
quotient, which is likely to account for the inability
of the surface modeling algorithm to correlate sig-
nificantly with growth rates derived from the stan-
dard of reference.

Although both algorithms are operator depen-
dent, the nearest-neighbor tissue segmentation ap-
proach requires less operator time. Surface mod-
eling requires the operator to define the structure in
question at each level in each image. These ana-
tomic surfaces are complex in geometry and at
times poorly enhancing, which makes it difficult to
capture the boundaries and may in part explain the
poor performance of the surface modeling algo-
rithm as compared with the nearest-neighbor al-
gorithm. The tissue segmentation algorithm, on the
other hand, requires an operator to choose a num-
ber of tag points. Although this may take time
(10 to 12 minutes) initially, the tag points may be
transferred through the use of automated image
registration and adjusted to fit subsequent images
(6). This substantially reduces the time required to
initiate the algorithm to only several minutes.
Though requiring more time, a strength of the sur-
face modeling technique is that it renders models
in greater detail, so focal change may be more read-
ily followed; this is accomplished by the algo-
rithm’s ability to track change across time on a
point-by-point basis.

Although each algorithm is able to quantify tu-
mor volume, neither is able to distinguish radiation
necrosis from tumor tissue. In fact, conventional
imaging does not reliably distinguish between ra-
diation necrosis and progressive tumor growth.
Distinguishing increased contrast enhancement due
to radiation necrosis from tumor growth depends
on determining the origin of the change in the en-
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hancing lesion. Providing insight into cellular
changes, MR spectroscopy has shown promise in
distinguishing between radiation necrosis and tu-
mor progression (21).

An important issue for any segmentation algo-
rithm is variability. Variability may further be
thought of in terms of precision, reproducibility,
and objectivity. Studies indicate that the degree of
variability is dependent on the type of segmentation
method, the tissue being segmented, and the chosen
scanning parameters (16). Vaidyanathan et al (22)
found that the inter/intraoperator reliability for
nearest-neighbor segmentations was 9% and 5%,
respectively, when multispectral segmentation was
used. Another study found operator variation in de-
termining boundaries to be a major source of error,
at times no less than 26% of points were disputed
between operators (23). The interoperator variabil-
ity of the algorithms, such as the nearest-neighbor
approach, may be lower than the variability of
manual segmentations (16). Kaus et al (18) report-
ed greater reproducibility with the nearest-neighbor
algorithm than with the use of manual segmenta-
tion. In summary, if the variability of the algo-
rithm-generated segmentation volumes falls within
the range of the manually segmented volumes, and
the mean algorithm volumes have a known rela-
tionship to manually segmented volumes, then al-
gorithm-generated volumes may be statistically in-
distinguishable from manually segmented volumes
and should be treated as on a par with them.

Minimal variability is desirable, and the use of
algorithms offers the potential to reduce variability
in multicenter clinical trials. With the potential that
segmentation volumes will be used to assist in
planning surgery, the issue of variability may then
be raised in regard to surgical resection in patients
with GBM. Gross total resection has been shown
to increase performance status and to improve neu-
rologic symptoms (24, 25). The degree to which
the extent of resection affects survival is still con-
troversial (26), although some studies have shown
increased survival with increased extent of resec-
tion (27, 28). Gross total resection with reduction
of tumor burden is, on the other hand, noncontro-
versial as a principle of neurooncology for improv-
ing patients’ functional status (25). Decisions re-
garding extent of tissue resection are made by the
neurosurgeons. The extent to which variability in
the algorithm may affect resection decisions de-
pends on the extent to which neurosurgeons rely on
algorithm volumes over their clinical experience.

The strong correlation between the manually de-
fined volumes and the algorithmically generated
volumes suggests that the algorithms are capable of
detecting and following change relative to the stan-
dard of reference. This ability is important. The rate
of tumor volume change as measured by halving
time and doubling time represents a parameter sen-
sitive enough to predict therapeutic response (12).
With a large number of chemotherapy trials under-
way and currently being planned, the need exists

for a protocol that can measure tumor response in
a large number of patients. Such a protocol must
be accurate and reliable, and preferably have a low
level of operator input. The data presented here and
in other studies indicate that the nearest-neighbor
algorithm is robust and could play a role in thera-
peutic trials (1, 4, 17, 22).

Besides tracking the volumetric changes in tu-
mor, 3D structural maps provide a framework in
which other data may be analyzed. Analyses may
be carried out while maintaining the integrity of the
positional relationship between the various data
sets and to neuroanatomy. Positron emission to-
mography (PET), MR spectroscopy, and diffusion
imaging data may be aligned with 3D structural
maps for multitechnique correlation and partial vol-
ume correction (29). MR spectroscopic data have
aided in the discrimination between tumor recur-
rence and radiation necrosis (21) and have shown
an increased choline/creatine ratio in high-grade
gliomas (30). A study by Gupta et al (31) provided
a good example of the power of linking various
imaging techniques. Using MR spectroscopy and
diffusion-weighted MR imaging, these authors
found an inverse relationship between choline sig-
nal and apparent diffusion coefficient. In a study
by Nairi et al (32), PET scans were registered to a
3D reconstruction of the cortical surface to delin-
eate gyral structure from infiltrative tumor better.
The results were encouraging, although additional
study of the relationship between tumor growth and
metabolic change is needed.

Conclusion
This study has shown that the nearest-neighbor

tissue classification algorithm and the 3D surface
modeling algorithm can both generate 3D structural
maps of tumor enhancement volumes that are high-
ly correlated with manually segmented volumes,
and that rates of growth may be accurately tracked.
The generated maps monitor the volume of tumor
enhancement at a specific time and over the course
of time. Three- and four-dimensional mapping of
tumor change will gain momentum as technical ad-
vances are made and the possibilities of these tech-
niques are realized.
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