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ORIGINAL RESEARCH
NEUROVASCULAR/STROKE IMAGING

CT-Based Intrathrombus and Perithrombus Radiomics for
Prediction of Prognosis after Endovascular Thrombectomy:

A Retrospective Study across 2 Centers
Minda Li, Jingxuan Jiang, Hongmei Gu, Su Hu, Jingli Wang, and Chunhong Hu

ABSTRACT

BACKGROUND AND PURPOSE: Complications from endovascular thrombectomy (EVT) can negatively affect clinical outcomes, making
the development of a more precise and objective prediction model essential. This research aimed to assess the effectiveness of
radiomics features derived from presurgical CT scans in predicting the prognosis post-EVT in patients with acute ischemic stroke.

MATERIALS AND METHODS: This investigation included 336 patients with acute ischemic stroke from 2 medical centers from March
2018 to March 2024. The participants were split into a training cohort of 161 patients and a validation cohort of 175 patients. Patient
outcomes were rated with the mRS: 0–2 for good, 3–6 for poor. A total of 428 radiomics features were derived from intrathrombus
and perithrombus regions in noncontrast CT and CTA images. Feature selection was conducted using a least absolute shrinkage and
selection operator regression model. The efficacy of 8 different supervised learning models was assessed using the area under the
curve (AUC) of the receiver operating characteristic curve.

RESULTS: Among all models tested in the validation cohort, the logistic regression algorithm for the combined model achieved the
highest AUC (0.87; 95% CI, 0.81–0.92), outperforming other algorithms. The combined use of radiomics features from both the
intrathrombus and perithrombus regions significantly enhanced diagnostic accuracy over models using features from a single region
(0.81 versus 0.70, 0.77), highlighting the benefit of integrating data from both regions for improved prediction.

CONCLUSIONS: The findings suggest that a combined radiomics model based on CT serves as a potent approach to assessing the
prognosis following EVT. The logistic regression model, in particular, proved to be both effective and stable, offering critical
insights for the management of stroke.

ABBREVIATIONS: AUC ¼ area under the curve; EVT ¼ endovascular thrombectomy; KNN ¼ k-nearest neighbors; LASSO ¼ least absolute shrinkage and
selection operator; LightGBM ¼ Light Gradient-Boosting Machine; LR ¼ logistic regression; MLP ¼ multilayer perceptron; Rad ¼ radiomics; RF ¼ random forest;
SVM ¼ support vector machine; XGBoost ¼ eXtreme Gradient Boosting

A cute ischemic stroke considerably contributes to death, dis-
ability, and high morbidity globally, greatly impacting global

mortality rates.1 Endovascular thrombectomy (EVT) is the
standard treatment recommended for patients experiencing
acute anterior circulation large-vessel occlusion.2,3 However,
EVT is associated with certain complications, such as intracra-
nial hemorrhage and malignant brain edema.4–8 The presence
of these conditions notably compromises the probability of

positive clinical outcomes and elevates the risk of death. Given
the heterogeneity of functional outcomes even after a success-
ful procedure, there is an urgent need to both identify patients
who are suitable for EVT and predict early poor outcomes.
These efforts can subsequently enhance the patient prognosis.

In recent years, certain radiologic signs such as the high-den-
sity MCA sign, intracranial high-density areas, large ischemic
cores, and mismatch of CT perfusion have been identified as pre-
dictors of clinical outcomes.9–12 Although these CT features pro-
vide valuable insight, their evaluation depends heavily on the
subjective interpretation by radiologists and may not be sufficient
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for accurate prognosis. Thus, developing a more precise and
objective prediction model is essential.

Radiomics analysis offers a quantitative approach by analyz-
ing the variations in gray levels among pixels, allowing a detailed,
high-throughput examination of imaging data that surpasses the
conventional visual assessments performed by experts. This
method holds promise for enhancing diagnostic accuracy.
Machine learning models such as support vector machine
(SVM), logistic regression (LR), and random forest (RF) have
proved effective in delivering precise predictions, thus aiding
health care professionals in refining stroke management and
enhancing patient outcomes.13 Recent progress in CT-derived
radiomics, particularly in analyzing thrombus properties, has
shown potential in forecasting various clinical outcomes. While
previous research has validated the effectiveness of CT-derived
thrombus radiomics in determining thrombus age, composition,
and origin, as well as predicting outcomes after thrombectomy or
thrombolysis treatments, and using a CTA-based thrombus radio-
mics model to estimate the timing of stroke onset,14–18 these
studies have primarily focused on intrathrombus features. There
remains a substantial research gap in examining perithrombus
areas and their role in predicting clinical outcomes after EVT.

Consequently, this research sought to evaluate the predictive
capacity of both intrathrombus and perithrombus radiomics fea-
tures extracted from CT for clinical outcomes post-EVT. We also
aimed to identify the most effective machine learning classifier
for this purpose through rigorous statistical analysis.

MATERIALS AND METHODS
Patients
This research adhered to the guidelines of the Declaration of
Helsinki and received approval from the ethics committees of the
participating hospitals and was granted a waiver of informed con-
sent. We performed a retrospective analysis on patients with acute
stroke who were admitted to 2 medical centers (A: Affiliated
Hospital of Nantong University, B: Shanghai Sixth People’s Hospital
Affiliated to Shanghai Jiao Tong University School of Medicine)
between March 2018 and March 2024. The inclusion criteria were
the following: 1) acute stroke resulting from anterior circulation
large-vessel occlusion; 2) visible thrombus-related signs on initial
NCCT or CTA at admission; 3) an mRS score of ,3 before
stroke; 4) subsequent immediate EVT; and 5) the availability
of comprehensive demographic and clinical data. Criteria for

exclusion were inadequate imaging clarity due to motion or metal
artifacts and incomplete clinical records. Collected clinical data
encompassed age, sex, medical history (including hypertension,
diabetes, hyperlipidemia, atrial fibrillation, and coronary artery
disease), and NIHSS score at admission. In this study, “progno-
sis” is defined as the clinical outcomes observed 90days after
EVT, as gauged by the mRS. The assessment specifically targets
the restitution of motor function and the frequency of major
complications. At 90 days, 2 specialized stroke neurologists (J.L.W.,
J.X.J.) conducted a systematic evaluation of the mRS scores.
Patients were categorized into 2 groups according to their mRS
scores: the good outcome group with mRS scores of ,3, and the
poor outcome group with mRS scores ranging from 3 to 6.
Patients from Center A were assigned to the training cohort,
while those from Center B were allocated to the validation cohort.
The patient-selection process and analytic pathway are depicted
in Fig 1. For further details on the code and model files, please
contact the corresponding author via e-mail.

CT Data Acquisition and Thrombus Segmentation
The radiomics process encompassed outlining the ROI, extrac-
tion of radiomics features, feature selection, and construction of
predictive models (Fig 2). NCCT and CTA were performed using
64- to 256-slice CT scanners from 2 vendors (Somatom Force,
Siemens; Revolution CT and Optima CT680, GE Healthcare),
with a reconstruction slice thickness between 0.63 and 1.00 mm.
Before thrombus segmentation, all CT scans were subject to in-
tensity normalization, adjusting the intensity values to a 0–600
range. The images were also adjusted to a uniform resolution of
1� 1 � 1 mm to standardize voxel dimensions. Thrombus-asso-
ciated ROIs were outlined using ITK-SNAP software (Version
3.6.0; http://www.itksnap.org/pmwiki/pmwiki.php) referencing
DSA images with the method used in our previous study.15 After
we segmented the intrathrombus regions, the perithrombus areas
were automatically segmented by increasing the radius by 1 mm
from the original ROIs using Python (Version 2.7.13). To assess
the precision of segmentation, we delineated 30 thrombi selected
at random 2 times from CTA scans via 1 radiologist (M.D.L.)
within a 2-week period and independently verified by another
radiologist (H.M.G.). Both readers were unaware of the patients’
clinical data during the segmentation process.

Feature Extraction and Selection
Following the delineation of intrathrombus and perithrombus
regions, radiomics features were obtained via the PyRadiomics

SUMMARY

PREVIOUS LITERATURE: Prior studies have examined the predictive value of CT-derived thrombus radiomics in stroke, focusing
mainly on intrathrombus features for predicting thrombectomy or thrombolysis outcomes. These investigations highlighted the
role of CT signs and thrombus properties in prognostication but also revealed limitations due to the reliance on subjective inter-
pretation and a singular focus on intrathrombus analysis.

KEY FINDINGS: Our study validates a CT-based combined radiomics model using both intrathrombus and perithrombus features,
with logistic regression demonstrating the highest predictive accuracy for post-EVT outcomes in stroke.

KNOWLEDGE ADVANCEMENT: The research advances understanding by integrating perithrombus features into predictive model-
ing, offering a more comprehensive and objective analysis that surpasses traditional evaluations, thereby enhancing stroke-out-
come predictions.
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library (https://pypi.org/project/pyradiomic/). From both regions
on NCCT and CTA scans, 428 features were derived in total. To
normalize these features and reduce variability across variances, we
applied z score normalization, scaling the features to a 0–1 range in
the training cohort. This normalization process was replicated in the
validation data sets as well. Feature selection was performed on the
training cohort via the Mann-Whitney U test to screen out redun-
dant radiomics features, keeping only those significant at P , .05.
To assess the interfeature relationships, we calculated the Spearman
rank correlation coefficients, and only features that demonstrated a
correlation coefficient of .0.9 with at least 2 other features were
kept. The refined data set was then subjected to the least absolute
shrinkage and selection operator (LASSO) regression model to de-
velop a predictive radiomics signature. In this study, we conducted
k-fold cross-validation as part of our regularization process, specifi-
cally tuning the l parameter to select features optimally.

Classifier Model Building and Evaluation
For the selection of radiomics features, the maximal relevance
and minimum redundancy method followed by the LASSO

technique was implemented sequentially. This method ranked
radiomics features with an intraclass correlation coefficient of
.0.90 on the basis of their relevance-redundancy index. From
this ranking, the top 10 features exhibiting the highest relevance
were preserved. These chosen features were further refined
through the LASSO classifier to pinpoint an optimized subset for
model development. A radiomics signature was established via
multiple logistic regression, using the selected features, and a
radiomics score (Rad score) was computed by summing these
features, each weighted by its respective coefficient.

To evaluate the clinical differences between patient groups
with and without good outcomes, we performed both univariate
and multivariate analyses. Additionally, 8 supervised machine
learning algorithms—RF, LR, SVM, k-nearest neighbors (KNN),
Extra Trees, Light Gradient-Boosting Machine (LightGBM;
https://lightgbm.readthedocs.io/en/latest/index.html), multilayer
perceptron (MLP), and eXtreme Gradient Boosting (XGBoost)—
were used as classifiers. After feature selection through the
LASSO method, these features were incorporated into the mod-
els, and a 5-fold cross-validation strategy was adopted to confirm
the final radiomics signature. The DeLong test was used to statis-
tically assess differences in predictive performance among the
radiomics models (intrathrombus, perithrombus, and combined
models). The CheckList for EvaluAtion of Radiomics study
(https://pubmed.ncbi.nlm.nih.gov/37142815/) served as the
guideline for standardized reporting in this radiomics research.
The optimal classification algorithm was identified to develop a
clinical prediction model that incorporates selected clinical
variables.

Statistical Analysis
Clinical characteristics were evaluated via the t test, Mann-
Whitney U test, or x 2 test as appropriate. To analyze the correla-
tions among features, we used the Spearman rank correlation
coefficient, retaining those features with a coefficient of .0.9.
The consistency of the ROI delineation was verified using the
intraclass correlation coefficient, with an intraclass correlation
coefficient of .0.75 indicating strong reliability. The efficacy of
the predictive models post-EVT was assessed with receiver oper-
ating characteristic curve analysis and the DeLong test for varia-
tions. A P value , .05 was statistically significant. To mitigate
type I errors from multiple comparisons, we used false discovery
rate corrections in our analysis.

We hereby present this article following the STARD reporting
checklist (Supplemental Data).

RESULTS
Patient Characteristics
In our study, 336 patients with stroke were carefully chosen on
the basis of defined criteria; 128 (38.1%) were assessed as having
a poor outcome following EVT. The study divided these patients
into 2 cohorts: The study group comprised 161 from Center A as
the training group and 175 from Center B as the validation group.
The Table provides a detailed summary of the demographic and
clinical characteristics of the patients, categorized on the basis of
the outcome after EVT for both the training and validation
groups. The analysis showed no significant statistical differences

FIG 1. Flow chart of the patient-selection process.
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in sex, age, hypertension, hyperlipidemia, diabetes, smoking hab-
its, coronary heart disease, or NIHSS scores between the good
outcome and poor outcome groups across both cohorts.
However, a notable statistical difference was found in the inci-
dence of atrial fibrillation between the groups. No statistically sig-
nificant variance was observed when comparing the 2 cohorts.

Feature Extraction and Selection
The intraclass correlation coefficient values demonstrated strong
agreement (0.75–0.90) for the radiomics features. After we con-
firmed this consistency, all pertinent radiomics features were
extracted and used to build predictive models. Ultimately, the Rad

scores were formulated using 6, 12, and 15 features, with nonzero
coefficients for the intrathrombus, perithrombus, and combined
models, respectively, as shown in Fig 3. Detailed information on
the chosen radiomics features can be found in the Supplemental
Data. All selected radiomics features originated from CTA images,
with no features being chosen from NCCT images.

Performance and Comparison of Models
The performance of 8 classifiers—LR, SVM, KNN, RF, Extra
Trees, XGBoost, LightGBM, and MLP—was assessed in both the
training and validation cohorts. The results are detailed in the
Supplemental Data and Fig 4.

Baseline demographic characteristics and clinical variables of enrolled patients

Variables

Training Cohort (n= 161) Validation Cohort (n= 175)

P Value

Good Outcome
(n= 110)
mRS (0–2)

Poor Outcome
(n= 51)

mRS (3–6) P Value

Good Outcome
(n= 98)
mRS (0–2)

Poor Outcome
(n= 77)
mRS (3–6) P Value

Age (mean) (yr) 65.7 (SD, 11.65) 63.76 (SD, 13.51) .45 66.76 (SD, 12.45) 66.96 (SD, 13.28) .83 .20
Male (No.) (%) 69 (62.73) 34 (66.67) .76 68 (69.39) 48 (62.34) .41 .66
History (No.) (%)
Hypertension 90 (81.82) 41 (80.39) 1.00 71 (72.45) 54 (70.13) .87 .05
Hyperlipidemia 36 (32.73) 16 (31.37) 1.00 23 (23.47) 25 (32.47) .25 .33
Diabetes 34 (30.91) 19 (37.25) .54 25 (25.51) 24 (31.17) .51 .33
Smoking 21 (19.09) 15 (29.41) .21 23 (23.47) 16 (20.78) .81 .99
Atrial fibrillation 74 (67.27) 24 (47.06) .02 69 (70.41) 42 (54.55) .05 .63
Coronary heart
disease

22 (20.00) 7 (13.73) .46 16 (16.33) 14 (18.18) .90 .83

NIHSS score (mean) 14.26 (SD, 8.45) 14.51 (SD, 8.24) .92 14.32 (SD, 7.57) 15.27 (SD, 6.90) .19 .64

FIG 2. Workflow of the CT-based radiomics model.
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In the evaluation of models for the intrathrombus, perithrom-
bus, and combined regions, XGBoost consistently outperformed
other algorithms in the training cohort. However, it experienced
a noticeable decline in performance when evaluated on the vali-
dation cohort. KNN, LightGBM, and RF showed performance
similar to that of XGBoost. LR performed slightly lower in the
training cohort compared with these models and was relatively
stable but excelled in the validation cohort.

Within the intrathrombus models of the validation cohort, LR
achieved the highest area under the curve (AUC) of 0.70 (95%
CI, 0.62–0.78), showing statistically significant differences com-
pared with XGBoost (P ¼ .03), RF (P ¼ .03), and KNN (P ¼ .01),
exhibiting no statistically significant disparities compared with
LightGBM (P ¼ .26), Extra Trees (P ¼ .97), MLP (P ¼ .36), and
SVM (P ¼ .13). For the perithrombus models, LR exhibited the
greatest AUC of 0.80 (95% CI, 0.73–0.87), demonstrating statisti-
cally significant distinctions compared with Extra Trees (P ¼
.002), LightGBM (P ¼ .04), MLP (P ¼ .03), and SVM (P ¼ .01),
whereas it did not differ significantly from RF (P ¼ .18),
XGBoost (P¼ .05), and KNN (P¼ .60). In the combined regions,
the LR model reached an AUC of 0.87 (95% CI, 0.81–0.92) and
was statistically different compared with Extra Trees (P ¼ .01),
KNN (P ¼ .02), RF (P ¼ .01), XGBoost (P , .001), LightGBM
(P, .001), MLP (P ¼ .01), and SVM (P ¼ .01).

Furthermore, in the validation cohort, the diagnostic capabil-
ity of the LR model using the combined regions significantly
surpassed that of both the intrathrombus (P , .001) and

perithrombus models (P ¼ .01). However, no significant differ-
ence in diagnostic performance was observed between the intra-
thrombus and perithrombus models (P¼ .05).

We integrated clinical parameters into an LR radiomics model
but observed no significant predictive gains in the validation
cohort (P . .05). An exclusively clinical LR model has also been
formulated. The receiver operating characteristic curves for all
3 models can be examined in the Supplemental Data.

DISCUSSION
In this retrospective analysis, our aim was to use radiomics fea-
tures derived from intrathrombus and perithrombus regions on
CT to forecast prognosis following EVT in patients with acute is-
chemic stroke. A substantial gap exists in the current research
regarding the use of thrombus-related radiomics for predicting
clinical outcomes following EVT, especially in perithrombotic
areas, because some studies focused on recanalization following
EVT.13,17 Our study developed and validated a radiomics model
that uses features from both intrathrombus and perithrombus
regions to estimate the prognosis after EVT. We used 8 different
classifiers to determine which models offer robust diagnostic
effectiveness and superior generalization capabilities. Among
these, the LR model using combined radiomics features proved
to be the most precise in predicting outcomes.

Prior research has shown that the duration of thrombectomy
and the frequency of interventions can influence the long-term

FIG 3. Radiomics feature-selection based on the LASSO algorithm and Rad score based on intrathrombus (A), perithrombus (B), and combined
regions (C). Details of selected radiomic features are in the supplementary materials.
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outcomes in patients.19,20 There is also evidence suggesting a rela-
tionship between the structural composition of the thrombus and
the number and duration of EVT procedures.21,22 Variables like
the use of stent retrievers, thrombotic makeup, and the number
of thrombectomy sessions might lead to varying extents of vascu-
lar trauma in patients with acute ischemic stroke,23,24 indicating
that thrombus composition could be a critical factor in forecast-
ing prognosis post-EVT. In this study, we constructed a com-
bined model using 15 selected radiomics features derived solely
from CTA, which included 9 features from intrathrombus
regions and 6 from perithrombus regions. Our analysis revealed
that radiomics features from both intra- and perithrombus
regions have potent predictive capabilities, particularly those
from perithrombus areas. In the validation cohort, radiomics
from the perithrombus areas notably enhanced the prognosis
post-EVT over features from intrathrombus regions alone. On
the basis of prior research25,26 and actual measurements of vessel
wall thickness on high-resolution MR images, we defined the
perithrombus region as extending 1 mm outward from the
thrombus boundary. The perithrombotic region, which includes
structures like the vessel wall and perivascular fat, may offer pre-
dictive insights into the disruption of the BBB associated with a
heightened risk of complications, aligning with previous find-
ings.27,28 Given that BBB disruption is commonly observed post-
EVT and is linked to an increased risk of complications,27,29

radiomics features from perithrombus regions could serve as cru-
cial predictors of clinical outcomes post-EVT. Using information
from both regions significantly improves diagnostic performance,
surpassing that of models using only intra- or perithrombus data,

underscoring the value of integrating data from both regions for
enhanced prediction accuracy.

The selection of classifiers is pivotal to the effectiveness of pre-
dictive models, yet there remains no universal standard guiding
this choice, leading researchers to rely on personal preference
and experience.30 Consequently, this study assessed and com-
pared 8 different machine learning classifiers. The findings indi-
cated that the LR model was consistently more effective than the
others in both training and validation cohorts, particularly when
analyzing combined radiomics features, achieving the highest
AUC across all classifiers. LR was favored over complex models
for its statistical simplicity, interpretability, and robust perform-
ance for binary classification tasks associated with lesser risks of
overfitting.15,31,32 Given the scope and nature of our data, we
believed that a parsimonious model like LR would be more
appropriate. Complex models like SVM, MLP, RF, Extra Trees,
XGBoost, KNN, and LightGBM, despite their high-dimensional
data-handling and robustness, were prone to overfitting without
substantial data and careful tuning. The notable decline in the
validation performance of XGBoost highlighted the overfitting
risk and the need for a balance between model complexity and
generalizability. The consistent validation cohort performance of
LR affirmed its suitability and reliability for clinical diagnostics,
justifying its choice due to effective generalization as demon-
strated across data sets.

In this study, except for atrial fibrillation, no clinical variables
exhibited statistically significant differences between the good
outcome and poor outcome groups in either the training or vali-
dation cohorts. Notably, a significant difference in the occurrence

FIG 4. In the training (A) and validation (B) cohorts, the 8 classifiers including the LR, SVM, KNN, RF, extra trees, XGBoost, LightGBM, and MLP
obtained AUCs for the models, respectively. In the validation cohort, the AUC range of each model based on intrathrombus regions is 0.61–0.70.
Based on perithrombus regions, it is 0.74–0.87, and on combined regions, it is 0.74–0.90 (C).
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of atrial fibrillation between the good outcome and poor outcome
groups was identified, in contrast to other studies that found no
significant differences.31,33,34 This inconsistency can be explained
by variations in data arrangement and the sample sizes involved
in our research. To further understand these discrepancies, addi-
tional research with larger sample sizes is recommended. The
combined model did not demonstrably enhance predictive per-
formance over the radiomics-only model, suggesting a greater
reliance on superior-performing radiomics features rather than
clinical variables.

This study has several notable limitations. First, the patient
sample size is relatively small, which may impact the stability of
the outcomes of the machine learning model; applying these
models to larger data sets could potentially provide more robust
results. Second, the thrombus-segmentation process was man-
ually conducted, which could be time-consuming and might
compromise the reliability of the results. Future research should
focus on developing automated or semiautomated methods for
more efficient and accurate thrombus segmentation. Third, we
sourced training and validation cohorts from separate centers,
and despite image calibration and cross-validation efforts, poten-
tial bias may exist. Last, even with cross-validation and regulari-
zation techniques, overfitting is a challenge in high-dimensional
data like ours. Future studies need to encompass more centers
and larger samples to validate our findings with external data.

CONCLUSIONS
We developed and validated a CT-based radiomics model to eval-
uate the prognosis following EVT in patients with acute ischemic
stroke. This model could provide critical insights for clinical deci-
sion-making and outcome prediction. The analysis showed varied
performance across different thrombus regions and classifiers,
with models that combined features from multiple regions prov-
ing most effective. Specifically, the LR models exhibited high effi-
cacy and stability in predicting clinical outcome.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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