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ABSTRACT

BACKGROUND AND PURPOSE: A national consensus recommendation for the collection of DSC-MRI perfusion data, used to create
maps of relative CBV (rCBV), has been recently established for primary and metastatic brain tumors. The goal was to reduce inter-
site variability and improve ease of comparison across time and sites, fostering widespread use of this informative measure. To
translate this goal into practice, the prospective collection of consensus DSC-MRI data and characterization of derived rCBV maps
in brain metastases is needed. The purpose of this multisite study was to determine rCBV in untreated brain metastases in compar-
ison to glioblastoma (GBM) and normal-appearing brain by using the national consensus protocol.

MATERIALS AND METHODS: Subjects from 3 sites with untreated enhancing brain metastases underwent DSC-MRI according to a
recommended option that uses a midrange flip angle, GRE-EPI acquisition, and the administration of both a preload and second
DSC-MRI dose of 0.1 mmol/kg gadolinium-based contrast agent. Quantitative maps of standardized relative CBV (srCBV) were gen-
erated and enhancing lesion ROIs determined from postcontrast TI-weighted images alone or calibrated difference maps, termed
A T1 (dT1) maps. Mean srCBV for metastases were compared with normal-appearing white matter (NAWM) and GBM from a previ-
ous study. Comparisons were performed by using either the Wilcoxon signed-rank test for paired comparisons or the Mann-
Whitney U nonparametric test for unpaired comparisons.

RESULTS: Forty-nine patients with a primary histology of lung (n = 25), breast (n = 6), squamous cell carcinoma (n = 1), melanoma
(n = 5), gastrointestinal (Gl) (n = 3), and genitourinary (GU) (n = 9) were included in comparison to GBM (n = 31). The mean srCBV
of all metastases (1.831.05) were significantly lower (P = .0009) than mean srCBV for GBM (2.67 * 1.34) with both statistically
greater (P < .0001) than NAWM (0.68 = 0.18). Histologically distinct metastases are each statistically greater than NAWM (P <
.0001) with lung (P = .0002) and GU (P = .02) srCBV being significantly different from GBM srCBV.

CONCLUSIONS: Using the consensus DSC-MRI protocol, mean srCBV values were determined for treatment-naive brain metastases
in comparison to normal-appearing white matter and GBM thus setting the benchmark for all subsequent studies adherent to the
national consensus recommendation.

ABBREVIATIONS: BSW = Boxerman Schmainda Weisskoff; dT1 = A TI, GBCA = gadolinium-based contrast agent; GBM = glioblastoma; Gl = gastrointestinal;
GRE = gradient echo; GU = genitourinary; NAWM = normal-appearing white matter; nrCBV = normalized relative CBV; PSR = percent signal recovery; rCBV =
relative CBV; SCC = squamous cell carcinoma; srCBV = standardized relative CBV; TIW = T1-weighted

B rain metastasis is the most common tumor of the central
nervous system, and the incidence is on the rise. One estimate
reports the annual number of identified cases in the United States
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to be 23,598." Yet, additional clinical data suggest that more than
100,000 patients develop brain metastases each year.” This sub-
stantial and increasing disease burden is in part due to an overall
increase of primary cancers, but also better systemic therapies
that increase the probability of metastatic disease as the patients
live longer.” The most common primary cancers are lung cancer,
breast cancer, and melanoma occurring in approximately 40%-
50%, 15%-20%, and 5%-20% of patients newly diagnosed with
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SUMMARY

PREVIOUS LITERATURE: The importance of obtaining perfusion-weighted MRI data, most commonly DSC-MRI data, is being
increasingly recognized for the evaluation of brain metastasis. However, a lack of consistency in brain tumor perfusion studies,

attributable to a lack of standard protocol, has resulted in a wide range of relative CBV values that are inconsistent and difficult
to reproduce between studies. To overcome this limitation a consensus protocol has been developed and used for the current

studies in treatment-naive brain metastases.

KEY FINDINGS: First steps toward establishing consensus-acquisition benchmark values for srCBV in brain metastases has been
accomplished. The srCBV can be used to distinguish brain metastases from normal-appearing brain and are generally less than

srCBV for glioblastoma.

KNOWLEDGE ADVANCEMENT: The results of this study should enable greater consistency and cross-site comparisons of srCBV
for the evaluation of both treated and untreated brain metastases.

brain metastases." The average survival for patients with brain
metastases is less than 6 months.”

Standard anatomic MRI, obtained with the administration of
a gadolinium-based contrast agent (GBCA), is central to the diag-
nosis of brain metastases.” Yet, the importance of also obtaining
perfusion-weighted MRI data, most commonly DSC-MRI data, is
being increasingly recognized. DSC-MRI, from which maps of
relative CBV (rCBV) can be generated, help to differentiate brain
metastases from normal brain tissue and potentially distinguish
brain metastases from primary brain tumors.” The use of rCBV
has also been encouraged for distinguishing progressive tumor
from pseudoprogession often due to posttreatment radiation effects,”
which often appear similar on postcontrast MRL®

However, a lack of consistency in brain tumor perfusion stud-
ies, attributable to a lack of standard protocol, has resulted in a
wide range of rCBV values that are inconsistent and difficult to
reproduce between studies.® Likewise, as summarized in Fig 1, a
wide range of MRI settings have been used for DSC-MRI studies
in metastatic brain tumors,” > all of which affect the quality and
accuracy of derived rCBV maps.”® This variability may limit the
ability of rCBV to identify metastases in distinction from normal
brain and/or differentiate metastases from glioblastoma (GBM),
for example. Pretreatment differentiation of these 2 most com-
mon intra-axial brain tumors is essential given the substantial dif-
ference in clinical work-up and treatment strategies for each.*!
Consequently, while most studies suggest that the mean rCBV in
brain metastases is less than GBM given their well-characterized
high vascularity,® it is not surprising that the margin of difference
ranges from negligible to statistically significant. In response, a
multi-investigator, multi-institutional working group was con-
vened to formulate a national consensus recommendation for
DSC-MRI data acquisition and postprocessing.”> This recom-
mendation, initially developed for primary brain tumors, was
also adopted for DSC-MRI of brain metastases.” Still, as Fig 1
confirms, this also means that benchmark rCBV values, deter-
mined with the consensus protocol, are lacking. It was therefore
the goal of this study to establish rCBV benchmark values for
metastatic brain tumors beginning with treatment-naive brain
metastases. We hypothesize that the determination of benchmark
rCBV values will enable the generalization of results that address
questions of whether rCBV can be used to distinguish brain
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metastases from normal-appearing brain, or primary brain tumor
and/or in distinction from metastases of different primary histol-
ogy. To begin to address this goal, we chose to compute standar-
dized relative CBV (srCBV)** as opposed to normalized relative
CBV (nrCBYV), the latter of which requires the subjective deter-
mination of a normalizing reference ROI. For srCBV, a prede-
termined calibration is used to generate quantitative srCBV
maps precluding the need for a reference ROIL Consequently,
stCBV provides more repeatable and consistent results across

35,36

time and patients, increasing the likelihood of distinguish-

ing tissue types with threshold values that can be widely applied.

MATERIALS AND METHODS

Patients

All participants were enrolled in this Health Insurance Portability
and Accountability Act-compliant study according to the institu-
tional review board policy and approvals at each of 3 participating
institutions (Medical College of Wisconsin, Mayo Clinic-Arizona,
Keck School of Medicine of University of Southern California).
Patients considered for inclusion were those with treatment-naive
brain metastases who underwent an MRI examination that
included DSC-MRI perfusion imaging. All diagnoses for metastases
were confirmed surgically after biopsy or resection. Also included
for comparison were participants from a single institution (Medical
College of Wisconsin) who had histologically confirmed treatment-

naive high-grade glioma with preoperative DSC-MRL?’

Imaging

All MRI examinations were performed on 3T MRI systems.
Standard precontrast FLAIR and T1-weighted (TIW) spin-echo
imaging were obtained according to the clinical protocol at each
site with postcontrast TIW images obtained after administration
of a 0.1 mmol/kg dose of a GBCA. The pre- and postcontrast
TIW images used the same acquisition parameters so that cali-
brated difference maps, referred to as A T1 (dT1) maps, could be
determined as previously described.”® One of the 2 recommended
consensus protocol options was used for all patients.>** For this
option the first GBCA dose (0.1 mmol/kg) serves as a preload for
the subsequent DSC-MRI data collection. Then, a second GBCA
dose (0.1 mmol/kg) is administered at 40-60 seconds during the
acquisition of GRE-EPI (FOV = 220 mm, matrix =96 x 96 or
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FIG 1. Summary of DSC-MRI parameter settings for studies that reported rCBV values for brain metastases. The studies were identified by per-
forming a literature search by using PubMed and Ovid Medline. The PubMed selection criteria used were “brain neoplasm*” OR “brain neo-
plasms” [MESH] OR “neoplasm metasta*” OR “brain metasta*”) AND (“rCBV” or “relative cerebral blood”)) AND (“DSCMRI” OR “DSC MRI” OR
(“dynamic susceptibility contrast” AND (“MR” OR “Magnetic Resonance Imaging” [MESH] OR “MRI"))), which yielded 248 publications. The Ovid
Medline parameters used brain neoplasm, neoplasm metastases, brain metastases yielding 389,714 publications. Further including cerebrovascu-
lar circulation or relative CBF, DSCMRI or DSC MRI or dynamic susceptibility yielded 1240 publications. The inclusion of contrast and (MR or MRI)
yielded 313 publications. Limited further to English language and humans yielded 212 publications. With both Pubmed and Ovid Medline 23 stud-
ies resulted that reported an intratumoral rCBV value of brain metastases.” ~° For these the DSC-MRI parameter settings are listed above along
with the consensus settings used in the current study. Note the wide range in values used. The dashed line indicates median settings across all
studies for TE, TR, and flip angle. Average values are shown for studies that reported a range of values, where unreported settings are designated
with an “X.” Unfilled circles indicate studies for which a GBCA preload was not given. Mean values are shown when ranges were given. Settings

used for our study are shown in blue.

128 x 128, slice thickness = 4-5 mm) by using recommended pa-
rameter settings (flip angle = 60°, TE/TR= 30 ms/1100-1250
ms). The GRE-EPI data were collected for a total duration of
120 seconds. When the DSC-MRI slices were not an exact subset
of the TIW slices, an additional TIW “reference” scan was obtained
by using a slice prescription (orientation and spacing) matching the
DSC-MRI examination for ease of coregistering the DSC-MRI to
the anatomic images.

Image and Statistical Analysis. stCBV values were calculated
onsite at each institution. This was made possible with the plat-
form-independent IB Rad Tech plug-in (Imaging Biometrics)
available at each site. IB Rad Tech was used with either the Horos
(https://horosproject.org) or OsiriX (https://www.osirix-viewer.
com) DICOM viewers. The customizable IB Rad Tech plug-in
was designed to guide the user through the desired postpro-
cessing steps, most of which are automatic but allow user over-
sight. For this study these steps included registration of the TIW
and DSC-MRI series, generation of dT1 maps,38 for delineation
of contrast-enhancing ROIs, and creation of srCBV>* with leak-
age correction.” Specifically, first pre- and postcontrast TIW
images are registered and individually standardized.*® Next, dT1
maps are computed from the difference between the registered
and standardized post- and precontrast TIW images. The dT1
facilitate the visualization of the enhancing lesion, free of intrinsi-
cally increased T1 signal from, for example, blood products or
proteinaceous material. Next, the user is prompted to draw a
rough-bounding ROI around the enhancing lesion. Because dT1

maps are quantitative, a single, previously determined threshold
is applied and an enhancing tumor ROI is generated.*® Next, the
T1W and DSC-MRI series are registered and leakage-corrected,
calibrated srCBV>* generated.39 Unlike nrCBV maps, srCBV do
not require user-drawn reference ROIs for normalization. Mean
srCBV for metastases are determined using the dT1 ROIs (or
postcontrast TIW ROIs when dT1 were not available), and com-
pared with srCBV in untreated GBM from a previous study.”’
Mean srCBV, from ROIs drawn within contralateral normal-
appearing white matter (NAWM) of each brain metastasis patient,
were also determined for purposes of comparison with normal-
appearing brain tissue. The srCBV for GBM and each group of
metastases for a specific primary cancer were also compared with
the NAWM from all metastases, a choice supported by the consis-
tency of NAWM rCBV values when standardized.”* The Wilcoxon
matched-pairs signed rank test was used to compare the metastases
and NAWM srCBV data as this is a paired data set. For the re-
mainder of comparisons, the Mann-Whitney U nonparametric test
was used. For both analyses a P < .05 was considered significant.

RESULTS

Forty-nine patients, from 3 institutions (Medical College of
Wisconsin = 28, University of Southern California = 12, Mayo
Clinic Arizona= 9), with treatment-naive brain metastases met
inclusion criteria for this study. The preoperative DSC-MRI stud-
ies took place between November 21, 2006 and September 21,
2020. The median age was 62 years with a range of 28-78 years.

AJNR Am J Neuroradiol 46:529-35 Mar 2025 www.ajnr.org 531
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FIG 2. MRI study obtained in a 64-year-old male patient with primary lung cancer. Shown are (A)
a T2W image, (B) postcontrast TIW image, (C) dT1 map, and (D) corresponding srCBV map of 1
image slice showing the rim-enhancing brain metastasis. The mean srCBV, for all lesions on all

image slices, is 1.56 = 1.40.

The patients included 23 men and 26 women. The primary
histology for the brain metastases included lung (n = 25), breast
(n = 6), squamous cell carcinoma (SCC) (n = 1), melanoma (n =
5), gastrointestinal (GI) (n = 3), and genitourinary (GU) (n = 9).
An additional 31 patients with histologically confirmed GBM
(according to the World Health Organization 2016 classifica-
tion*®), who underwent preoperative DSC-MRI from 2010-2014,
were included for comparison. The GBM data were included in a
previously published report.””

An example MRI study with a corresponding srCBV map is
shown in Fig 2 for a 64-year-old male patient with primary lung
cancer. The mean srCBV for all metastases (1.83 * 1.05) is signif-
icantly lower (P = .0009) than the mean srCBV for GBM (2.67 *
1.34) with both statistically greater (P < .0001) than NAWM
(0.68 = 0.18) (Fig 3A). The srCBV for histologically distinct
metastases are also shown (Fig 3B) with each being statistically
greater than NAWM (P < .0001) except for SCC, which is
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nonevaluable given n = 1. Lung (P =
.0002) and GU (P = .02) srCBV were
significantly less than GBM srCBV while
breast (P = .76), melanoma (P = .86),
and GI (P = .41) srCBV were not. The
individual srCBV mean and standard
deviation are as follows: lung (1.54 =
0.59), breast (2.28 *0.87), melanoma
(2.48 = 1.24), GI (1.91 * 0.64), and GU
(2.01 = 1.88).

DISCUSSION
By means of DSC-MRI perfusion imag-
ing, which is consistent with the estab-
lished consensus protocol for primary
brain tumors® and incorporated for
brain metastases,” data obtained from
3 sites demonstrate that brain metasta-
ses of different primary origins have
srCBV values that in general are signif-
icantly greater than NAWM, but sig-
nificantly lower than srCBV for GBM.
Unique to this study, srCBV values of
brain metastases were determined by
using the consensus DSC-MRI protocol.
The results of this study confirm
that srCBV should be helpful in identi-
fying brain metastases as distinct from
normal brain. These results reflect the
fact that new vessel formation (ie, angio-
genesis) is a hallmark of brain metastases
development.*' Yet, given the reported
variability in the degree of angiogenesis
based on primary histology it was unclear
that this result would apply to all metas-
tases. SCC was the only metastatic type
not showing this distinction. But, with
only 2 patients with SCC, a firm conclu-
sion is not possible for this primary his-
tology and a larger study is warranted.
Similarly, metastatic stCBV was found to be less than GBM
srCBV, a finding consistent with the well-known highly angiogenic
nature of GBM. However, the results were mixed when comparing
individual metastases in comparison with GBM. This is likely due to
variations in angiogenesis for different metastatic types, but also to
smaller numbers of patients for some categories. Even so, for all
cases, metastatic mean srCBV was less than GBM mean srCBV
suggesting the possibility of distinction of untreated primary
GBM from metastatic tumor types based on srCBV alone. While
a recent study demonstrated that percent signal recovery (PSR),
determined from the raw DSC signal, was better than rCBV for
distinguishing lymphoma and primary and metastatic tumor
types™® these comparisons were performed by using suboptimal
DSC-MRI acquisition settings different from the national recom-
mendation and did not include a comparison with standardized
rCBV. Therefore, whether srCBV or PSR is best for this distinction
remains an open question. Alternatively, it is possible that a
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FIG 3. Mean srCBV (A) for all metastases (1.83 = 1.05) is statistically less than that for GBM (2.67 +
1.34) (P = .0009) and significantly greater than the mean srCBV for NAWM (0.68 * 0.18) (P <
.0001). Likewise, mean srCBV for GBM is statistically greater than for NAWM (P < .0001). B, The
srCBV for histologically distinct metastases are each statistically greater than NAWM (P < .0001),
except for metastatic SCC, which is nonevaluable with n = 1. Lung (P < .0002) and GU (P = .02)
rCBV are also significantly different from GBM. The individual srCBV mean, standard deviation, and
numbers (n) for each of histologically distinct brain metastases are lung (1.54 = 0.59, n = 25), breast
(228 = 0.87,n = 6), SCC (1.59, n = 1), melanoma (2.48 = 124, n = 5), GI (191 = 0.64, n = 3), and GU
(2.01 = 1.88, n = 9) as compared with GBM (2.67 % 134, n = 31) and NAWM (0.68 = 0.18, n = 49).

combination of PSR and srCBV may provide the best distinction
of these tumor types.

While all data in this study were collected with 1 of the 2 recom-
mended acquisition options, previous studies have demonstrated the
equivalence of these acquisition options for standardized rCBV.*
Thus, we contend that comparable thresholds would likewise be
determined if the single-dose low FA acquisition option were used.
In addition to using the consensus recommendation for the acquisi-
tion of the perfusion MRI, we also followed the recommendation to
incorporate leakage correction as part of the postprocessing.>
Though a particular leakage correction algorithm was not specified
as part of the consensus recommendation, we used one of the most
common and well-published/proved approaches, referred to as the
BSW (Boxerman, Schmainda, Weisskoff) leakage correction
method.* As previously demonstrated, if rCBV maps are not cor-
rected for leakage effects, their correlation with tumor aggressive-
ness is lost.”>* In addition, only when BSW leakage correction was
applied did the single-dose consensus option give results equivalent
to the standard double-dose option.*

srCBV rather than nrCBV was used in this study. The ra-
tionale is based on studies showing that srCBV, while providing
information comparable to nrCBV, is more consistent than
nrCBV, with lower coefficient of variation®* and improved
repeatability”® across time points. This greater consistency is due,
at least in part, to the fact that srCBV does not require the manual
delineation of a reference ROI, which also makes possible the seam-
less and routine integration of automatic srCBV map generation
into the daily workflow. Furthermore, the fact that the standardiza-
tion of rCBV results in a quantitative rCBV map has far reaching
implications for the determination of thresholds to distinguish
tissue and tumor types, which can be broadly applied. A recent
example is the srCBV thresholds determined to distinguish
high-grade tumor from treatment effect.** This threshold is
being used for the creation of fractional tumor burden maps*’

reproduce. This study uses data collected
with the recently published consensus
protocol together with one of the mostly
widely used approaches for leakage cor-
rection thereby establishing a bench-
mark for all forthcoming studies seeking
to use DSC-MRI for the evaluation of
brain metastases.

As previously described it was possi-
ble for stCBV to be calculated in the
same way at each site by using a customizable software plug-in
available at each institution. The processing workflow can be cus-
tomized according to the needs of each study or site, with respect
to order of processing, types and names of input images and types
of output parameter maps. Yet the core processing modules to
create parameter maps, such as dT1 and srCBV, remain fixed.
This flexibility coupled with algorithmic consistency makes possi-
ble the widespread adoption and consistency of methodology and
reported results across sites.

Study limitations include a small study population, with small
numbers of patients in categories with less common metastases.
Also, the focus was on untreated brain metastases only. However,
the results motivate additional studies with more subjects, which
may also help to address the possibility of making further distinc-
tions among metastases resulting from different primary cancers. In
addition, knowledge of untreated brain metastases is the first step to-
ward addressing the utility of DSC-MRI for the evaluation of treated
metastases. As with primary brain tumors, there is mounting evi-
dence to indicate that rCBV can better distinguish tumor progres-

sion from nontumor treated tissue than standard MRI alone.®***°

CONCLUSIONS

Using the consensus DSC-MRI acquisition protocol we have con-
firmed the utility of standardized rCBV to identify biologically
active, treatment-naive brain metastases as distinguished from
NAWM and GBM thus setting the benchmark for all subsequent
studies adherent to the national consensus recommendation.
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