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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Evaluating Biases and Quality Issues in Intermodality
Image Translation Studies for Neuroradiology:

A Systematic Review
Shannon L. Walston, Hiroyuki Tatekawa, Hirotaka Takita, Yukio Miki, and Daiju Ueda

ABSTRACT

BACKGROUND: Intermodality image-to-image translation is an artificial intelligence technique for generating one technique from
another.

PURPOSE: This review was designed to systematically identify and quantify biases and quality issues preventing validation and clini-
cal application of artificial intelligence models for intermodality image-to-image translation of brain imaging.

DATA SOURCES: PubMed, Scopus, and IEEE Xplore were searched through August 2, 2023, for artificial intelligence–based image
translation models of radiologic brain images.

STUDY SELECTION: This review collected 102 works published between April 2017 and August 2023.

DATA ANALYSIS: Eligible studies were evaluated for quality using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM)
and for bias using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Medically-focused article adherence was compared
with that of engineering-focused articles overall with the Mann-Whitney U test and for each criterion using the Fisher exact test.

DATA SYNTHESIS: Median adherence to the relevant CLAIM criteria was 69% and 38% for PROBAST questions. CLAIM adherence
was lower for engineering-focused articles compared with medically-focused articles (65% versus 73%, P, .001). Engineering-focused
studies had higher adherence for model description criteria, and medically-focused studies had higher adherence for data set and
evaluation descriptions.

LIMITATIONS:Our review is limited by the study design and model heterogeneity.

CONCLUSIONS: Nearly all studies revealed critical issues preventing clinical application, with engineering-focused studies showing
higher adherence for the technical model description but significantly lower overall adherence than medically-focused studies. The
pursuit of clinical application requires collaboration from both fields to improve reporting.

ABBREVIATION: AI ¼ artificial intelligence

Artificial intelligence (AI)-based image translation converts an
image into a similar-but-different image.1,2 This feature may

mean changing a landscape from a summer to a winter scene, or a
CT into an MR image. The accuracy and capacity to do what
humans physically cannot has always been the promise of AI in
medicine.3 In neuroradiology specifically, using an AI model to

convert among radiologic image modalities such as PET, MR
imaging, and CT has several advantages, including increased acces-
sibility and decreased time and radiation exposure. In the case of
MR imaging, for example, patients with metal implants or contrast
allergies cannot undergo the examination, though they may be
able to undergo a CT.4 An AI model produces the image almost
immediately, while scheduling the examination can take days; this
issue is known to affect prognosis.5 For radiography, CT, and PET,
patients are exposed to ionizing radiation, and the repeat examina-
tions required for radiation therapy can cause cumulative damage.
Thus, image translation models have been in development to har-
ness these advantages for MR imaging-only radiation therapy plan-
ning6 and ischemic stroke lesion segmentation since 2017.7-10

Despite these potential advantages and a 6-year history of
published research, intermodality image translation models are
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still in the initial development stage. It has been suggested that
fewer than one-quarter of AI studies could be reproduced from
these methods,11 reproduction being a necessary validation step
before clinical application. Previous reviews described some
study-design trends that might be related to the lack of progress
toward clinical application.4,6,12,13 There are also trends in the
results for medically-focused journals and engineering-focused
journals.13,14 Various checklists have been designed to support
authors in this task, but few are applicable to AI, and even fewer,
to imaging-based studies. The Checklist for Artificial Intelligence
in Medical Imaging (CLAIM)15 is a prominent checklist for AI
models built to classify, generate, or otherwise use medical images.
This checklist includes 42 items that authors should include to
ensure that readers can thoroughly assess and reproduce the work.
Additionally, the Prediction model Risk Of Bias ASsessment Tool
(PROBAST)16 is designed for assessing bias in diagnostic or prog-
nostic prediction models. This bias assessment is an integral part
of any systematic review of health care models because it allows
readers to visualize which studies have shortcomings that may lead
to distorted results. Although many questions are not applicable to
AI models, some PROBAST items can be used to evaluate biases
specific to image-to-image translation studies. Using multiple
checklists may provide more comprehensive coverage of all
the salient points of each work.17

As this field grows, researchers must be aware of and consider
the quality of and biases in their methods so that they can be
transparently and consistently reported and, eventually, system-
atically mitigated.18 In this review we used 2 common checklists
to quantify the quality and extent of biases in intermodality image
translation studies for brain imaging. We found no study apply-
ing CLAIM or PROBAST to evaluate image-to-image translation
articles in the field of brain imaging.

MATERIALS AND METHODS
This review was registered on PROSPERO (CRD42022368642;
https://www.crd.york.ac.uk/PROSPERO/) and was conducted in

accordance with the Prisma statement
(https://www.prisma.io/).19 Approval
from the ethics board was not necessary
because this review used published data.

Searching Strategy
PubMed, Scopus, and IEEE Xplore
were searched from inception through
August 2, 2023, using variations of
the terms artificial intelligence,
MR, CT, image-to-image translation,
image synthesis, Pix2Pix, and GAN.
The full search text is available in the
Online Supplemental Data. After a pre-
liminary search, keywords related to the
brain or specific brain diseases were
considered too limiting, so we excluded
these terms to reduce sampling bias.
The references of similar reviews and
the included studies were also screened
for inclusion. Duplicate results were

removed, and the remaining published articles were independently
screened for inclusion by 2 authors. Inclusion criteria were studies
developing or evaluating an AI model capable of converting images
of the brain from one image technique to another, from human
participants. Only the relevant experiments were considered from
studies with multiple experiments (Fig 1).

Data
The data required to identify each study were collected into a pre-
designed spreadsheet. This spreadsheet includes relevant article
information, data set information, the overall model purpose and
design, the translation pair for all relevant experiments, and
results for all relevant CLAIM and PROBAST criteria.15,16 To
reveal any differences specific to articles published in medically-
focused or engineering-focused journals, we grouped journals on
the basis of their aims and scope as in Kim et al.12 Medically-
focused journals were defined as those that included terms related
to clinical medicine in their scope, and engineering-focused jour-
nals were those with an engineering, physics, or computer science
scope. Unclear journals were classified in consensus between 2
authors. Extractable data were collected by one author and con-
firmed by 3 authors.

Quality Evaluation
Adherence to the CLAIM checklist was evaluated by 1 author
using the full text and supplements of each study. Values were
considered absent if they were missing or unclear. Questions not
relevant to the study were marked as not applicable and did
not negatively affect the CLAIM adherence estimation. For
example, not all studies were classification or diagnosis tasks,
so CLAIM question 36 was not applicable to these studies
(Online Supplemental Data).

Bias Evaluation
PROBAST-based bias was evaluated by 1 author using questions
1.1, 1.2, 4.1, and 4.8 from PROBAST.16 We used a generous def-
inition of “external data set” for question 4.8, which includes

FIG 1. PRISMA flow chart.
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temporally separate data as well as data from different facilities,
as in Kim et al.12 Following Kuo et al20 and Nagendran, et al,21

we considered the patients included in the test set for domain 1
and excluded the other questions as not relevant to AI models,
which perform image-to-image translation. This includes all of
domain 2, which is not relevant to AI studies, and all of domain
3, because the outcome is not relevant for image translation
studies (Online Supplemental Data).

For paired-image studies, which developed diagnostic, prog-
nostic, or segmentation models, a large gap between the imaging
of the 2 ground truth modalities may affect the resultant model
classification or segmentation performance. The appropriate tim-
ing depends on the specific disease and may vary for individuals
within a data set, so this information was collected but not evaluated.

Analysis
For CLAIM, the number of items evaluated as “yes” or “not ap-
plicable” was summed and divided by the total items in the
checklist to estimate adherence at the study level as in Sivanesan
et al.14 PROBAST adherence is given as “high,” “unclear,” or “low”
risk of bias designations for each study. Data normality was
assessed using the Shapiro-Wilk test. Means were compared using
the 2-sample t test; medians were compared using the Mann-
Whitney U test between articles in medically-focused publications
and those from engineering-focused publications. Item-level evalu-
ation was performed for both CLAIM and PROBAST to show
trends in image-to-image translation research. The Fisher exact
test was used for each criterion to compare the medically-focused
studies with the engineering-focused studies. Significance was
defined as P, .05. Analysis was performed using R (Version 4.1.3;
http://www.r-project.org/).

RESULTS
Study Demographics
There were 102 studies collected for this review. Medically-
focused publications made up 64 studies, and 38 were from engi-
neering-focused journals. The source images included MR imag-
ing, CT, PET, and radiography (Table 1). Most studies evaluated
MR imaging translation to either CT (63/102) or PET (13/102),
citing the better soft-tissue contrast and lack of radiation expo-
sure of MR imaging. Most MR imaging-to-CT studies targeted
MR imaging–based radiation therapy planning (48/63). Dosimetry
evaluations were included in 17 of these studies. Other targets
included attenuation correction (10/63), more accurate registration

(3/63), segmentation (1/63), and research
data set generation for future AI studies
(1/63). The MR imaging-to-PET studies
primarily focused on the diagnosis of
Alzheimer disease (4/13) or MS (1/13),
glioma management and prognosis
(2/13), attenuation correction (1/13,) and
amyloid-burden estimation (2/13).

CT-to-MR imaging translation (12/
102) was the next most common, with
the rationale being that CT data are
useful for dose calculations of radiation
therapy and can be collected quickly, at

lower cost, and at more facilities than MR imaging. Most of these
studies targeted anomaly segmentation such as ischemic stroke
localization (6/12) or CT-based radiation therapy planning (3/12).
There were 7 studies that evaluated bidirectional translations; 6 of
which comprised the MR imaging-to-CT and CT-to-MR imaging
translation pair and 1 study that evaluated the PET-to-CT and CT-
to-PET translation as well. One of these studies was designed for
segmentation of follow-up images of patients with ischemic stroke;
2 others were designed to assist with radiation therapy planning.

Other translation pairs included MR imaging-to-radiograph
for interventional imaging, PET-to-CT for attenuation correc-
tion, PET-to-MR imaging for amyloid-burden estimation, and
ultrasound-to-MR imaging for easier communication between
technicians and obstetricians (Online Supplemental Data).

The specific clinical purpose or application for the model in
addition to image generation was described in 95 studies. We
determined the remaining studies using the common clinical pur-
poses for the translation pair. These include diagnosis, prognosis,
registration, segmentation, and treatment (Online Supplemental
Data). There was a significant difference in the CLAIM scores
between the medically-focused and engineering-focused groups
for both diagnosis and treatment purposes (Online Supplemental
Data). The other purpose groups did not have enough data for the
Mann-Whitney U test.

CLAIM Evaluation
Each study followed between 44% and 88% of applicable CLAIM
criteria, with a 70% average overall (Fig 2). There was a signifi-
cant difference in the adherence between medically-focused jour-
nal studies (73% average adherence) and those from engineering-
focused journals (65% average adherence) (P, .001) (Fig 2 and
Table 2). There was no significant difference between the per-
formance of studies published before or after the CLAIM criteria
were published. (P¼ .841).

There were 5 criteria with an average adherence of #10%. Of
note, 1% of studies described the intended sample size (CLAIM
19), 3% of studies described the flow of including participants
(CLAIM 33), and 8% of studies used an external testing data set
(CLAIM 32).

Engineering-focused studies reported data for the questions
related to describing the model in adequate detail (CLAIM 22,
24, 25, 26) in the article, while medically-focused studies more
often moved this information to the supplement. On the other
hand, medically-focused studies significantly outperformed

Table 1: Included studies
Number
of Studies

Average CLAIM
Adherence

Average PROBAST
Score

Image-generation direction
MR imaging-CT 63 71% 38%
MR imaging-PET 13 74% 49%
CT-MR imaging 12 63% 41%
PET-CT 3 67% 33%
PET-MR 2 74% 56%
MR imaging-x-ray 1 64% 31%
US-MR imaging 1 67% 31%
Bidirectional 7 65% 33%

Total 102 70% 39%

Note:—US indicates ultrasound.
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engineering-focused studies in 21% (9/42) of the CLAIM criteria.
These criteria related to describing the data sets (CLAIM 7, 8, 11,
14, 15, 34), the software used for model development (CLAIM
23), statistical significance levels (CLAIM 29), and any failures
(CLAIM 37).

Publication styles differ for engineering studies, and this feature
significantly affected the resultant CLAIM adherence. Specifically,
27 of the 39 engineering-focused works were presented at engi-
neering conferences and published as proceedings. These are given
a DOI and widely regarded as citable publications,22 though the
peer review and writing of these submissions may still be of lower
quality.23,24 Thus, conference publications represent 72% of engi-
neering-focused studies but ,5% of medically-focused studies.
Although they are considered published, we found that works writ-
ten for engineering-focused conferences had significantly lower re-
sultant CLAIM adherence than engineering-focused works for
journals (P¼ .01) (Online Supplemental Data). Without these con-
ference publications, medically-focused studies significantly out-
perform the engineering-focused studies for only 3 criteria related
to describing the data sets (CLAIM 5, 8, 34).

The adherence for medically-focused and engineering-focused
studies varied by study purpose (Online Supplemental Data).
Medically-focused studies had significantly higher adherence
for MR imaging-only radiation therapy planning, with an 11%
improvement over the average for engineering-focused studies.
Only medically-focused studies attempted dose calculations as part
of a radiation therapy planning study, and excluding these did not
affect the significance of the difference between the CLAIM score
of these and the engineering-focused studies. Although there were
not enough studies to confidently establish significance, attenua-
tion correction and stroke lesion localization also had 10% and
18% higher CLAIM adherence than similar engineering-focused
studies, respectively.

PROBAST Evaluation
Overall bias via PROBAST was low for 4 studies,8,25-27 unclear
for 4 studies, and high for 94 studies (Fig 3 and Table 3).
Medically-focused studies used population-based data in signifi-
cantly more studies. (P¼ .006) There was no significant differ-
ence in the PROBAST adherence for the other 3 questions
between studies from medically-focused and engineering-focused
journals (Fig 3) (Online Supplemental Data). There was no signif-
icant difference between the performance of studies published
before or after the PROBAST criteria were published. (P¼ 1).

More than 71% (73/102) of studies used internally collected
data for the test data set. These were presumed to be consecutive
samples and marked as probably having a low risk of bias for
question 1.1 unless stated otherwise. The remaining 29 studies
used publicly available data. Although the use of curated public
data sets is generally considered appropriate for AI model

FIG 2. CLAIM evaluation. Each vertical bar shows the adherence for all studies for one of the CLAIM criteria. Within each bar, green represents
the percentage of studies appropriately adhering to the CLAIM criteria, gray represents studies for which that question was not applicable, and
orange represents studies that did not adhere to that CLAIM criteria. A, Overall adherence for 102 studies. B, Adherence for medically-focused
studies (n¼ 64). C, Adherence for engineering-focused studies (n¼ 38). NA indicates not applicable.

Table 2: CLAIM adherence results
Medically-
Focused

Engineering-
Focused P Value

Title/abstract 99% 95% .0652
Introduction 100% 100% 1
Methods 72% 63% ,.001
Results 53% 39% .0046
Discussion 73% 59% .0629
Other 90% 85% .2023
Total 73% 65% ,.001

AJNR Am J Neuroradiol 45:826–32 Jun 2024 www.ajnr.org 829



development, PROBAST standards require the model to be tested
on data representative of the target population. Studies using
public data sets that were not collected or adjusted to match the
sampling frequencies of a real population were marked as having
a high risk of bias for question 1.1.

Exclusion criteria were described in 17 studies, 13 of which
were from medically-focused journals. An additional 6 studies (5
of which were from medically-focused journals) included lan-
guage that implied that there were some exclusion criteria,
though they were not described in detail. These were marked as
probably having a low risk of bias for question 1.2. Because it is
unclear if exclusions were maliciously hidden or if the authors
had included all available images, the remaining 79 studies were
marked as having an unclear risk of bias.

There were 6 studies with .100 individuals in the test data
set, as recommended by PROBAST. Five of these were published
in a medically-focused journal. The remaining studies either had
test sets of ,100 individuals or were not clear about the number
of images of individuals in their test data set (this point is further
addressed in CLAIM 21).

External data sets (PROBAST 4.8 and CLAIM 32) were used
in 9% (9/102) of studies. Eight of these were published in

medically-focused journals. The size of the external test set varied
with a median of 17.5 and interquartile range of 126.25. It is diffi-
cult to accurately calculate significant changes across time with
only 9 studies.

The timing between the index and reference test was reported
in 30 of 89 studies that used paired data, and 3 of 13 studies that
used unpaired data. We observed a slightly higher reporting rate
in medically-focused studies (38% [24/64]) compared with engi-
neering-focused studies (24% [9/38]) (P¼ .191).

DISCUSSION
This systematic review evaluated the quality issues and biases
present in intermodality image translation studies relevant to
brain imaging published before August 2023 using PROBAST
and CLAIM criteria. We found 102 studies using brain images
for intermodality image translation using an AI model. The prin-
cipal findings of this review are that nearly all of the 102 pub-
lished works had quality issues and critical biases hindering the
clinical integration progress, with engineering-focused studies
showing significantly lower checklist adherence than medically-
focused studies. Studies at a high risk of bias largely lacked an
external testing data set and were unclear about the data used,
particularly the collection dates, data-source location, any exclu-
sion criteria, the number of individuals included, and how the
data were processed to make them fit for the AI model. Replication
of results is of great importance inmedicine—reflected in the numer-
ous, detailed checklists available to researchers—and replication in
the age of AI requires closer collaboration with our computer engi-
neering colleagues.

To our knowledge, this is the first study to evaluate study
quality and biases in intermodality image-to-image translation
models for brain imaging. CLAIM and PROBAST were used to
evaluate whether the methods or data sets used in these studies
showed quality issues or risks of bias.15,16 PROBAST is not
only familiar to many readers, but it covers 4 of the signs of bias
raised in other reviews and guidelines for applying AI to medical
imaging translation.12,13,28 We additionally chose the CLAIM
checklist because it is designed to show the “rigor, quality, and
generalizability of the work,” by encouraging transparent and
thorough reporting specifically of medical AI studies. This

Table 3: Bias risk results

Low Unclear High
All studies

Question 1.1 97 (95%) 2 (2%) 3 (3%)
Question 1.2 23 (23%) 79 (77%) 0 (0%)
Question 4.1 9 (9%) 10 (10%) 83 (81%)
Question 4.8 9 (9%) 0 (0%) 93 (91%)
Overall bias 4 (4%) 4 (4%) 94 (92%)

Medically-focused adherence
Question 1.1 64 (100%) 0 (0%) 0 (0%)
Question 1.2 18 (28%) 46 (72%) 0 (0%)
Question 4.1 7 (11%) 3 (5%) 54 (84%)
Question 4.8 8 (13%) 0 (0%) 56 (88%)
Overall bias 3 (5%) 4 (6%) 55 (86%)

Engineering-focused adherence
Question 1.1 33 (87%) 2 (5%) 3 (8%)
Question 1.2 5 (13%) 33 (87%) 0 (0%)
Question 4.1 2 (5%) 7 (18%) 29 (77%)
Question 4.8 1 (3%) 0 (0%) 37 (97%)
Overall bias 1 (3%) 0 (0%) 37 (97%)

FIG 3. Bias evaluation. Each horizontal bar shows the risk of bias for all studies for one of the PROBAST criteria. Within each bar, green repre-
sents the percentage of studies with a low risk of bias and gray represents studies for which there was an unclear risk of bias, and orange repre-
sents studies with a high risk of bias for the question. Question 1.1 asks if the data source matched the target population. Question 1.2 asks if the
inclusion and exclusion criteria were appropriate. Question 4.1 asks if the test data set was appropriately sized. Question 4.8 asks if the model
was tested on an external data set to account for overfitting or optimism in the model. A, Overall adherence per question for all 102 studies. B,
Adherence for engineering-focused studies (n¼ 38). C, Adherence for medically-focused studies (n¼ 64).

830 Walston Jun 2024 www.ajnr.org



checklist not only addresses all 4 included PROBAST criteria but
also exposes bias risks from inadequate reporting of the included
data sets and model development methods. The use of these
measures together gives us a more granular view of the strengths
and weaknesses of these studies.17

Because AI-based neurologic image translation represents an
intersection of the medical and engineering fields, researchers on
both sides must work together to make sure their work is clearly
represented in published articles to improve repeatability.11

Engineering studies in journals effectively described 4 CLAIM
questions about the AI model (CLAIM 22, 24–26) more often
than medically-focused studies, though this difference was not
statistically significant. Similarly, medically-focused studies more
often included data set details such as the number of patients and
their demographics, included statistical measures such as confi-
dence intervals, and listed some known limitations of their work
(CLAIM 5, 8, 29, 34, 38). For these models to continue toward
clinical integration, they must prove good performance while fol-
lowing both medical and AI engineering standards. Medically-
focused tools such as PROBAST and CLAIM may be improved
by requiring more of the model details provided by AI engineers
to ensure accurate replication of these ever more complex AI
models.29 Additionally, authors can introduce checklists such as
CLAIM for imaging studies, STARD (https://www.equator-network.
org/reporting-guidelines/stard/)30 for diagnostic accuracy studies,
and TRIPOD (https://www.tripod-statement.org/about/)31 for
diagnostic or prognostic prediction studies to their collaborators
who may be unfamiliar with them as a guide for writing their sec-
tions. Open collaboration between medical and AI engineering
researchers is key to moving these models past the initial develop-
ment stage.

Our findings of extensive risks of bias do not imply that a vali-
dated AI model would be insufficient as a clinician’s support tool.
Current tools and procedures have weaknesses for which AI may
be able to compensate.32 For example, there are scenarios such as
radiation therapy planning that benefit from having both the bet-
ter soft-tissue contrast of MR imaging and the electron density
estimates of CT.33 Because it is not always practical or possible to
perform both examinations, an image translation model could
generate this image. Furthermore, the CT scans and MR images
must be registered for tasks like atlas-based methods or ischemic
stroke lesion localization, which can lead to artifacts from mis-
alignment.4,6,34 By negating these weaknesses, image-generation
AI models can lead to speedier, safer, more cost-efficient work-
flows, benefitting both the patient and the facility.

Limitations
This review had several limitations. There was heterogeneity in
study designs of the collected studies, limiting our ability to com-
pare the models and data sets directly. Our inclusion criteria may
have excluded relevant studies, though we attempted to correct
this possibility by scanning the references of both the collected
works and previous reviews on the topic. We did not compare
the publication requirements for the included journals, so it is
unclear whether requirements, such as word-count limits, supple-
mentary-material limits, or requirements on the use of standar-
dized checklists, impacted quality and bias estimates. This study

used only 2 checklists to estimate study design failures and risk of
bias. While PROBAST is a common tool for bias evaluation of
medical studies, it is difficult to apply to AI and even more so
for image translation models. New guidelines specific to medi-
cal AI applications are in development that may address this
difficulty.29,35,36 Perhaps future AI works will modify their
methods accordingly to minimize bias.

CONCLUSIONS
Image-to-image translation AI models represent a promising tool
for reducing radiation exposure, examination costs, and time
delay. However, currently published models have quality issues
and are at high risk of bias, attributable to weak adherence to
established reporting guidelines such as CLAIM and PROBAST.
From a clinical applicability point of view, studies published in
engineering-focused journals have significantly more quality
issues and higher risk of bias than those published in medically-
focused journals. However, medically-focused studies often lack
necessary model development details found in engineering-
focused studies. Our analysis shows that closer cooperation
between medical and engineering researchers could improve
overall guideline adherence, so these models can be validated and
developed into valuable clinical tools.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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