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ORIGINAL RESEARCH
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Identifying Patients with CSF-Venous Fistula Using Brain MRI:
A Deep Learning Approach

Shahriar Faghani, Mana Moassefi, Ajay A. Madhavan, Ian T. Mark, Jared T. Verdoorn, Bradley J. Erickson, and
John C. Benson

ABSTRACT

BACKGROUND AND PURPOSE: Spontaneous intracranial hypotension is an increasingly recognized condition. Spontaneous intracranial
hypotension is caused by a CSF leak, which is commonly related to a CSF-venous fistula. In patients with spontaneous intracranial hypo-
tension, multiple intracranial abnormalities can be observed on brain MR imaging, including dural enhancement, “brain sag,” and pituitary
engorgement. This study seeks to create a deep learning model for the accurate diagnosis of CSF-venous fistulas via brain MR imaging.

MATERIALS AND METHODS: A review of patients with clinically suspected spontaneous intracranial hypotension who underwent
digital subtraction myelogram imaging preceded by brain MR imaging was performed. The patients were categorized as having a
definite CSF-venous fistula, no fistula, or indeterminate findings on a digital subtraction myelogram. The data set was split into 5
folds at the patient level and stratified by label. A 5-fold cross-validation was then used to evaluate the reliability of the model.
The predictive value of the model to identify patients with a CSF leak was assessed by using the area under the receiver operating
characteristic curve for each validation fold.

RESULTS: There were 129 patients were included in this study. The median age was 54 years, and 66 (51.2%) had a CSF-venous fistula.
In discriminating between positive and negative cases for CSF-venous fistulas, the classifier demonstrated an average area under
the receiver operating characteristic curve of 0.8668 with a standard deviation of 0.0254 across the folds.

CONCLUSIONS: This study developed a deep learning model that can predict the presence of a spinal CSF-venous fistula based on
brain MR imaging in patients with suspected spontaneous intracranial hypotension. However, further model refinement and external
validation are necessary before clinical adoption. This research highlights the substantial potential of deep learning in diagnosing
CSF-venous fistulas by using brain MR imaging.

ABBREVIATIONS: AUROC ¼ area under the receiver operating characteristic curve; CET1 ¼ contrast-enhanced T1-weighted; CTM ¼ CT myelography; DL ¼
deep learning; DSM ¼ digital subtraction myelogram; SIH ¼ spontaneous intracranial hypotension; SLEC ¼ spinal longitudinal extradural fluid collection

Spontaneous intracranial hypotension (SIH) is a clinical
condition that is usually caused by a spinal CSF leak.1

SIH is associated with substantial morbidity. Patients classi-
cally present with orthostatic headaches but may also suffer
from symptoms such as tinnitus, dizziness, and, in severe
cases, long-term disability or even coma.2 There are many
subtypes of CSF leaks, though the role of CSF-venous fistulas
has recently gained greater recognition.3 Much of this recog-
nition has come from considerable progress in the diagnosis

and treatment of CSF-venous fistulas, particularly with the rise
of decubitus digital subtraction myelograms (DSMs) and the
increased usage of decubitus CT myelography (CTM), which
have led to the increased diagnosis of previously under-recog-
nized CSF-venous fistulas.4

Multiple intracranial abnormalities have been reported on
brain MR imaging in patients with SIH. These findings can
largely be explained by the Monro-Kellie doctrine, in which the
relative lack of CSF leads to a compensatory response in the brain
parenchyma and vascular structures.5 Namely, the pituitary,
dura, and dural venous sinuses engorge. In some cases, the brain
also “sags,” displaying both decreased mamillopontine distance
and effacement of the suprasellar and prepontine cisterns. Together,
these findings have been used to make a probabilistic scoring system
(the “Bern score”) in which the probability of identifying a
CSF leak can be calculated based on the presence or absence
of these findings.6
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Despite these advancements, there is still a need for a more
precise method by which to identify patients with CSF-venous
fistulas by using brain imaging, as up to 19% of patients with SIH
can have normal brain MR imaging.7 As of now, no deep learning
(DL) algorithm has been specifically designed to analyze brain
MRIs for this medical condition. This study aims to develop and
internally validate such an algorithm (“SIHnet”) among a group
of patients suspected to have SIH.

MATERIALS AND METHODS
Institutional review board approval was obtained for this retro-
spective study. The requirement for informed consent was waived.

Patient Cohort
A retrospective analysis was carried out, focusing on patients sus-
pected of having SIH who underwent lateral decubitus DSM
between December 30, 2021, and November 30, 2022. The exclu-
sion criteria included the absence of pre-DSM brain MR imaging
or substandard image quality. In addition, to focus on the SIH
subpopulation associated with CSF-venous fistula, patients were
excluded if a spinal longitudinal extradural fluid collection (SLEC)
was noted on the pre-DSM spinal MR imaging. For any patients
who had undergone a previous DSM (ie, before the study inclusion
date), either 1) the initial DSM identified a CSF leak or 2) the first
DSM performed at our institution (in patients for whom a CSF
leak was not identified) and the most recent brain MR imaging
preceding the DSM were used for analysis. The number of days
between the pre-DSM brain MR imaging and analyzed DSM
was recorded.

Digital Subtraction Myelography and CT Myelography
Technique
Our previously described DSM technique8 spanned 2 days, with
patients being positioned first in the right lateral decubitus posi-
tion and subsequently in the left. DSMs were performed using
biplane fluoroscopy machines, specifically, either the Artis Icono
system (Siemens Healthineers) or the Allura Xper system (Philips
Healthcare), with most cases using only a single anteroposterior
plane. Patients were placed on a wedge-shaped cushion on a tilt-
able table such that their hips were higher than their shoulders. A
20- or 22-gauge spinal needle was inserted into the thecal sac,
usually at the L2–3 or L3–4 level. Each side underwent 2 distinct
DSM acquisitions, with one focusing on the upper spine and the
other on the lower. A total of 11 mL of intrathecal Omnipaque
300 (GE Healthcare) was used. Post-DSM, the patients were
transferred to a CT scanner for a full-spine same-side lateral
decubitus CTM, which was conducted on a dual source Somatom
Flash scanner (Siemens Healthineers). Both the DSM and the CT
myelogram were analyzed as parts of a unified diagnostic
assessment.

MR Brain Imaging Protocol
Brain MRIs were performed by using either 1.5T or 3T scanners.
Most image analyses relied on fat-saturated postcontrast 3D T1
fast spin echo sequences (TR¼ 600ms, TE¼ 7.2ms, flip angle¼
120°, section thickness¼ 1mm, FOV¼ 250� 250 mm2).

Image Analysis
Four neuroradiologists (I.T. M., A.A.M., J.C.B., and J.T.V.) with
2–8 years of posttraining subspecialty expertise in interpreting
neuroradiologic examinations reviewed the DSM and pre-DSM
MR brain images, with the entire cohort being split evenly among
the reviewers. The reviewers were blinded to clinical information
but not to the official reports or annotations in the picture archiv-
ing and communication system. Each reviewer independently
evaluated all DSMs for the presence or absence of an identified
CSF leak (specified as positive, negative, or indeterminate). MR
imaging brain scans were assessed for multiple potential stigmata
of SIH that must be measured to determine a Bern score, including
the engorgement of venous sinuses, pachymeningeal enhancement,
suprasellar cistern height, subdural fluid collection, prepontine cis-
tern width, and mamillopontine distance. The Bern score was
determined for each patient, and its discrimination performance
was evaluated by calculating the area under the receiver operating
characteristic curve (AUROC).

Data Set Splitting
Participants whose DSM studies demonstrated an absence or de-
finitive presence of CSF-venous fistula were included in the
study. The data were split into 5 folds at the patient level by using
the GroupKfold module from the scikit-learn package, version
1.2.0. Cross-validation of the final model was performed on all 5
groups to determine the robustness of the results.9

Data Preprocessing and Model Development
Initially, for CSF-venous fistula detection, the process involved
converting 2D sagittal contrast-enhanced T1-weighted (CET1)
images from the DICOM format to the 3D Neuroimaging
Informatics Technology Initiative format. Subsequently, the
MR images were resampled to possess voxel dimensions of 1 �
1 � 1mm through trilinear interpolation. To satisfy image size
uniformity, the images were zero-padded to dimensions of 240,
260, and 260 voxels, corresponding to the largest dimensions
observed across the data set.10 To prevent overfitting, a range of
data augmentation techniques were applied.11 These encom-
passed random intensity shifts, random histogram adjustments,
random bias field variations, flipping, random affine transforma-
tions, and random Gaussian noise. For further descriptions of
these techniques, refer to the Online Supplemental Data.

We used a 3D-DenseNet-121 classifier sourced from the
MONAI package (version 1.1.0), which showed promising results
in classification tasks dealing with 3D medical imaging vol-
umes.10,12,13 DenseNet, a convolutional neural network, uses con-
volutions to extract meaningful information while connecting
each layer to every other layer in a feed-forward manner. Within
the architecture of DenseNet, a 1� 1 convolution was introduced
before each convolution layer to serve as a bottleneck layer to
trim the count of feature mappings.14 This approach to dimen-
sion reduction, implemented through both bottleneck layers and
transition layers within each attenuated block, contributes to
enhanced parameter efficiency and a reduction in model com-
plexity. This design choice aids in mitigating the risk of overfit-
ting. To enhance the model’s generalizability and mitigate
overfitting, we used the AdamW optimizer with a batch size of 4
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and a weight decay of 0.1.15 This choice of optimizer integrates
weight decay as a regularization technique. The scheduler started
with an initial learning rate of 0.001 and ran for 450 epochs,
and this was followed by a restart interval of 200 epochs. This
approach was adopted to circumvent potential issues with con-
verging to local minima.16 Figure 1 illustrates the schematic
pipeline for preprocessing and training.

To handle the slight class imbalance in the data set, we utilized
a weighted cross-entropy loss function and assigned reverse class
ratios as weights to the positive and negative classes to more
effectively address the imbalance.17 The model weights from the
epoch with the greatest AUROC, indicating the highest discrimi-
native value, were saved for every fold.18 In addition to each fold,
the mean and standard deviation of the AUROC across the folds
were reported.

Occlusion Interpretation Maps
In our study, we used an occlusion interpretation technique to
investigate the significance of different regions within 3D CET1
volumes for model predictions. This approach systematically
replaces portions of the input volume with zeros and measures
the impact on the model’s output logits to identify the most influ-
ential regions in the CET1 volume for the model’s decision-mak-
ing process. A 3D patch with a shape of 12 � 13 � 13 was slid
across the input CET1 volume, and the change in the model’s
prediction score for the target label was recorded at each step.

These changes were accumulated to form an occlusion map,
which served as a visual interpretation tool. The stride for moving
the patch through the input CET1 volume was set to 12 � 13 �
13, ensuring a comprehensive yet computationally efficient ex-
ploration of the 3D volume space.

Our model training was conducted on a cluster comprising 4
NVIDIA A100 GPUs. All image processing and model develop-
ment were performed using PyTorch 1.12.0 and MONAI 1.1.0
with Python 3.10.4 on a GPU cluster of 4 GPUs (NVIDIA A100).
All statistical analyses were performed using scikit-learn 1.2.0.

RESULTS
There were 129 patients were included in this study. The median
age was 54 years (interquartile range¼ 20 years). There were 66
(51.2%) patients with and 63 (48.8%) patients without CSF-ve-
nous fistula. Patient demographics and brain MR imaging Bern
scores are summarized in Table 1.

The AUROC for the Bern score, which is used to differentiate
between patients with CSF-venous fistula and those without a
leak, was 0.8. The classifier demonstrated an average AUROC of
0.8668, with a standard deviation of 0.0254 across the folds, in
determining the positive and negative cases of CSF leaks. Table 2
and Figure 2 summarize the model performance on each fold.

Figure 3 illustrates the occlusion map, highlighting the key
regions upon which the model relies for its decision-making
process.

DISCUSSION
The present study set out to develop and internally validate a DL
algorithm capable of identifying patients in whom DSM could
localize a spinal CSF leak in the context of suspected SIH, based
on sagittal CET1 brain MR imaging. The results indicate that the
algorithm created in this study had a classifier with an average
AUROC of 0.8668, surpassing the discriminative ability of the
Bern score and indicating a promising level of performance.

The algorithm developed in this study has the potential to
substantially impact the ability of clinicians to identify patients
who would benefit from DSM imaging in the context of suspected
SIH. Specifically, this algorithm could serve as a preliminary
screening tool to aid both neurologists and neuroradiologists in
the assessment of patients with clinically suspected SIH. By identi-
fying which patients are considered likely to have a CSF-venous fis-
tula identified on subsequent imaging, clinicians could use this

FIG 1. Schematic illustration of the preprocessing, data augmentation, and model training pipeline. A, 3D contrast-enhanced T1 input volume. B,
Preprocessed and augmented CET1 to mitigate overfitting. C, 3D-DenseNet model. D, Prediction of absence or presence of CSF leak.

Table 1: Participant characteristics and Bern score status
Subject Characteristics All Subjects (n= 129)

Median age in years (interquartile range) 54 (20)
Age range in years 23–87
Female 84 (65.12%)
Male 45 (34.48%)
Bern score

Low risk (Bern score 0–2) 47 (36.43%)
Intermediate risk (Bern score 3–4) 26 (20.15%)
High risk (Bern score .4) 56 (43.42%)

Table 2: Summary of classifier performance per validation fold
Fold Number AUROC

1 0.8988
2 0.8284
3 0.8580
4 0.8580
5 0.8910
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tool to better select who should undergo additional invasive test-
ing, such as DSM or dynamic CTM imaging. Thus, the algorithm
has the potential to both streamline the diagnostic process and
reduce health care costs by minimizing the occurrence of unneces-
sary tests.

In addition, the results presented here are the first of their
kind. While machine learning has made considerable strides in
neuroradiology, there is a notable gap in its application for the di-
agnosis and prognosis of CSF leaks.19 A study by Fu et al20 used
DL to quantify spinal CSF in whole-spine MR myelography.
However, their focus was on a different aspect of CSF analysis,
leaving a critical void in the utilization of machine learning for
CSF leak diagnosis. Arnold et al21 extracted radiomics features
from brain MR imaging and then trained a support vector

machine to discriminate between patients with SIH and healthy
controls. These results underscore the significance of the current
study, which aims to address this unexplored area by applying
end-to-end deep learning methods, specifically for the diagnosis
of CSF leaks.

Over recent years, there has been considerable progress in our
knowledge and diagnostic understanding of SIH and CSF leak
imaging. Throughout these gains, the Bern score has remained a
steadfast metric that is widely used to predict which patients with
suspected SIH may have a spinal CSF leak.6 Nevertheless, the
Bern score does have some limitations.22 It is heavily dependent
on sub-mm measurements, which are imperfect on the PACS
systems of most institutions. In addition, the cohort used for
analysis in the initial Bern score study was composed entirely of

patients with “fast” CSF leaks, meaning
those that are accompanied by a SLEC.
However, it is now known that a sub-
stantial percentage of patients with SIH
lack a SLEC. CSF leaks in such patients,
if found, are often CSF-venous fistulas.
The current study sought to address
this gap in knowledge by using a cohort
of patients without a SLEC on pre-
DSM spinal MR imaging.

Interestingly, the occlusion maps
produced by this study’s algorithm
revealed SIHnet’s tendency to allocate
greater weights to the superior and pos-
terior regions of the brain. This allo-
cation does not fully align with the
established Bern criteria, which place
greater emphasis on the brainstem,
suprasellar cistern, and adjacent ana-
tomic structures. Nevertheless, it is
crucial to interpret these results judi-
ciously. Occlusion maps and other
interpretation methodologies are not
definitive tools for understanding the
underlying decision-making process
of a model. While they may not eluci-
date “which” features are considered

FIG 3. Three-part representation of the regions that are crucial to the model’s decision-making process in detecting CSF leaks. A, Sagittal view
of contrast-enhanced T1 brain MR imaging. B, Occlusion mask overlaid on the original contrast-enhanced T1 image, highlighting the regions that
significantly influence the model’s predictions. C, Occlusion mask generated to identify regions of interest.

FIG 2. Receiver operating characteristic (ROC) curves for 5-fold cross-validation. Each curve rep-
resents the performance of the model on a distinct validation fold. The curves demonstrate the
model’s ability to distinguish between the absence and presence of CSF leaks from brain MR
imaging scans.
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essential by a model, they do potentially indicate “where” the
model is focusing its attention. Despite this limitation, the
model may discern brain sagging by focusing on extracted in-
formation from the superior and posterior parts of the brain. It
could potentially evaluate features such as pachymeningeal
enhancement, venous engorgement, and subdural collections,
as well as the dural geometry in these areas, and these could be
evaluated in a quantitative manner rather than via a simple
qualitative assessment of their presence or absence. The insights
derived from interpretation maps could still be valuable for iden-
tifying imaging biomarkers in future studies.23,24

Our study is not without limitations. Most notably, the algo-
rithm was trained and validated by using retrospective data from
a single institution, albeit using multiple MR imaging scanner
models and protocols. To generalize the applicability of our
model, it is crucial to externally validate it by using data sets from
various institutions with diverse imaging protocols. In addition,
only patients without a SLEC were included in the final patient
cohort. Additional validation by using patients with both “slow”
and “fast” CSF leaks will be needed to allow for greater generaliz-
ability of the results generated here.

CONCLUSIONS
This study developed and internally validated a DL algorithm to
identify patients with a CSF leak based on brain MR imaging
findings. The algorithm yielded a promising level of performance,
but further refinement and external validation are required prior
to its clinical adoption.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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