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ORIGINAL RESEARCH
NEUROVASCULAR/STROKE IMAGING

Clinical and Pathophysiologic Correlates of Basilar Artery
Measurements in Fabry Disease

Alessandra Scaravilli, Serena Capasso, Lorenzo Ugga, Ivana Capuano, Teodolinda Di Risi, Giuseppe Pontillo,
Eleonora Riccio, Mario Tranfa, Antonio Pisani, Arturo Brunetti, and Sirio Cocozza

ABSTRACT

BACKGROUND AND PURPOSE: Alterations of the basilar artery (BA) anatomy have been suggested as a possible MRA feature of
Fabry disease (FD). Nonetheless, no information about their clinical or pathophysiologic correlates is available, limiting our compre-
hension of the real impact of vessel remodeling in FD.

MATERIALS AND METHODS: Brain MRIs of 53 subjects with FD (mean age, 40.7 [SD, 12.4] years; male/female ratio¼ 23:30) were col-
lected in this single-center study. Mean BA diameter and its tortuosity index were calculated on MRA. Possible correlations
between these metrics and clinical, laboratory, and advanced imaging variables of the posterior circulation were tested. In a sub-
group of 20 subjects, a 2-year clinical and imaging follow-up was available, and possible longitudinal changes of these metrics and
their ability to predict clinical scores were also probed.

RESULTS: No significant association was found between MRA metrics and any clinical, laboratory, or advanced imaging variable
(P values ranging from �0.006 to 0.32). At the follow-up examination, no changes were observed with time for the mean BA diam-
eter (P ¼ .84) and the tortuosity index (P ¼ .70). Finally, baseline MRA variables failed to predict the clinical status of patients with
FD at follow-up (P ¼ .42 and 0.66, respectively).

CONCLUSIONS: Alterations of the BA in FD lack of any meaningful association with clinical, laboratory, or advanced imaging find-
ings collected in this study. Furthermore, this lack of correlation seems constant across time, suggesting stability over time. Taken
together, these results suggest that the role of BA dolichoectasia in FD should be reconsidered.

ABBREVIATIONS: BA ¼ basilar artery; FA ¼ fractional anisotropy; FASTEX ¼ FAbry STabilization indEX; FD ¼ Fabry disease; Gb3 ¼ globotriaosylceramide;
ICC ¼ intraclass correlation coefficient; LysoGb3 ¼ globotriaosylsphingosine; MSSI ¼ Mainz Severity Score Index; PCA ¼ posterior cerebral artery; TI ¼
tortuosity index

Fabry disease (FD) is a rare X-linked lysosomal storage disorder
caused by deficient activity of the lysosomal enzyme a-galac-

tosidase A,1 which leads to a progressive lysosomal accumulation
of glycosphingolipids, mainly globotriaosylceramide (Gb3) and
its deacylated form globotriaosylsphingosine (LysoGb3), in mul-
tiple organs including the CNS.2

Although a relatively new-but-large amount of evidence sug-
gests the occurrence of a deep and widespread CNS involvement
occurring in FD,3-8 brain damage has historically been considered

as primarily sustained by cerebral vasculopathy, due to the high
incidence of stroke in these patients.9,10 In this light and from a
neuroradiologic standpoint, much interest in the field has been,
therefore, dedicated to the search for an imaging biomarker related
to vascular abnormalities in FD.11 Among these, the dilative arte-
riopathy of the posterior circulation is recognized as one of the
main conventional imaging findings in this condition, with
reported alterations of the vertebrobasilar system that included
elongation, ectasia, tortuosity, and focal aneurysmal dilation.11,12

In the search for quantitative biomarkers to characterize and
standardize the evaluation of these posterior circulation alterations,
different measurements of the dolichoectasia of the basilar artery
(BA) have been tested, in some cases proposing thresholds to dif-
ferentiate patients with FD from healthy controls.13,14 However,
this evidence is described in small groups of patients13,15 and not
always confirmed in other studies, with conflicting results reported
in the literature.11,14,16-18 Furthermore, when tested in large and rep-
resentative groups of patients,14,18-20 neither information about
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possible association with structural alterations of the posterior
circulation territories nor the possible clinical impact of this alter-
ation was ever probed, leaving the question of the real impact of
this observed change in FD unanswered.

Given this background, this study had 2 main aims: 1) to repli-
cate the methodology used in BA measurements previously pro-
posed in the FD literature, and 2) to evaluate the suitability of these
measurements as severity biomarkers in this condition. To fulfill
this second major aim, we a) investigated the relation between BA
changes and the macro- and microstructure of the posterior circu-
lation territories, as well as the possible associations with clinical
and laboratory metrics to understand both the pathophysiologic
and biologic meanings of posterior circulation alterations in
FD and b) investigated these variables in a longitudinal setting, to
evaluate the occurrence of possible changes over time and their
meaning in FD and if they can predict the clinical status of the
patients.

MATERIAL AND METHODS
Participants
In this retrospective study, part of a larger monocentric frame-
work of CNS involvement in FD, MRI, and clinical data were
collected from October 2015 to December 2019. From a clinical
standpoint, exclusion criteria were the following: age younger
than 18 years and older than 65 years and a history of major
cerebrovascular events and/or other relevant neurologic or sys-
temic conditions. Furthermore, patients with artifacts on MRI
sequences evaluated in this analysis, an incomplete MRI exami-
nation, or vertebral artery agenesia on MRA were excluded
from the study (Fig 1).

Clinical and laboratory variables collected within 1 week of the
MRI scan and retrieved from the medical records included the
Mainz Severity Score Index (MSSI)21 and the FAbry STabilization
indEX (FASTEX)22 scores as indices of multiorgan damage sever-
ity, along with the residual a-galactosidase A activity and LysoGb3
levels. According to the median value of the MSSI score found in
our group, patients were defined as mildly (if equal or minor to the
median value) or severely affected. A similar approach was applied
for the neurologic subscore of the MSSI, to identify patients with a
less severe or a more pronounced CNS involvement.

This study was approved by the local Ethics Committee (no
62/10), “Carlo Romano”, University of Naples “Federico II” in ac-
cordance with the ethical standards of the institutional research
committee and with the 1964 Helsinki Declaration and its later
amendments. Written informed consent was obtained from all
subjects before enrollment.

MRI Data Acquisition
All participants underwent a standardized MRI protocol on the
same 3T scanner (Magnetom Trio; Siemens), with the same soft-
ware version (VB19) and the same 8-channel head coil. The MRI
protocol included an MPRAGE: 160 axial slices, TR ¼ 1900 ms,
TE¼ 3.4 ms, TI¼ 900 ms, flip angle¼ 9°, voxel size¼ 1.0� 1.0�
1.0 mm3 for the macrostructural evaluation of brain volumes; a
3D FLAIR: 160 sagittal slices, TR ¼ 6000 ms, TE ¼ 396 ms, TI ¼
2200 ms, voxel size¼ 1.0� 1.0� 1.0 mm3 used for the assessment
of white matter hyperintensities; a diffusion-weighted spin-echo
sequence: TR ¼ 7400 ms, TE ¼ 88 ms, flip angle ¼ 90°, voxel
size ¼ 2.2� 2.2� 2.2 mm3 with 64 directions at b ¼ 1000 s/mm2

in addition to nine b ¼ 0 s/mm2 for the evaluation of brain
microstructure; and a 3D TOF-MRA sequence: 128 slices, TR ¼
22 ms, TE¼ 3.86 ms, flip angle¼ 18°, voxel size¼ 1.1� 0.8� 0.8
mm3 used for the posterior circulation anatomy assessment.

MRI Data Analysis
All MRA images were evaluated by 3 readers with different exper-
tise: a neuroradiologist resident with 2 years of experience in neu-
roimaging (reader A) and 2 board-certified neuroradiologists
with.5 (reader B) and 15 years of experience (reader C), respec-
tively. Readers evaluated all TOF images independently and
blinded to the subjects’ demographic and clinical data, to evaluate
the reliability of MRA-related signs in FD and a possible effect of
the degree of experience in these evaluations. Measures obtained
by the most experienced rater (reader C) are reported in the fol-
lowing sections of the article and used for all statistical analyses.
Furthermore, a subgroup of 15 subjects was randomly selected to
assess the intrareader reliability of the investigated MRI measures
after a wash-out period of 15 days by reader A.

According to a previous study,14 2 measures were obtained
from the MRA data: the mean BA diameter and its tortuosity

SUMMARY

PREVIOUS LITERATURE: The search for a reliable MR biomarker in FD is an unmet need. Different neuroradiologic features have
been reported in these patients, but none has proved to be, to date, reliably useful for either diagnostic or prognostic purposes.
In this context, alterations of the posterior circulation (namely elongation, tortuosity, and ectasia, especially of the BA) have
been proposed as the most prominent neuroradiologic findings in FD, but the real prevalence of this finding as well as the possi-
ble clinical consequences or pathophysiologic correlates are still debated in the literature.

KEY FINDINGS: No meaningful increase in the mean BA diameter was observed in our sample. No significant correlation
emerged between morphologic alterations of the BA and the macro- or microstructure of the posterior circulation as well as
any clinical outcome, either at a cross-sectional or longitudinal evaluation.

KNOWLEDGE ADVANCEMENT: BA measurement is prone to a high variability both within and between readers, mitigating the
routine use in clinical practice of this feature. Furthermore, the absence of correlation with clinical markers of the disease
excludes a possible use of the BA abnormalities as a prognostic biomarker in FD.
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index (TI). These 2 metrics were calculated as follows: using the
MPR function of a freely available DICOM viewer (Horos,
Version 3.3.6; http://horosproject.org), TOF reformats were ori-
ented perpendicular to the BA at 3 different points (namely,
proximal, central, and distal portions) to obtain the correspond-
ing diameters. An average value of these 3 measurements was
then calculated, with the mean BA diameter used in all analyses.
Using the same MPR function, we selected the coronal plane,
with a MIP reconstruction and the minimum slab thickness ena-
bling the inclusion of the BA in its entirety. On this image, the
linear and curved lengths of the BA were collected as a straight
line passing from the apex of the BA to the convergence of the
vertebral arteries and as a curved line following the vessel along
its central portion in its entirety, respectively. These 2 measure-
ments were then combined to calculate the TI according to the
formula [TI ¼ (curved length/linear length) – 1]. An example of
these measurements is available in Fig 2.

Macro- and microstructural indices of damage in FD were
obtained as follows: As a first step, DICOM images were con-
verted into a NIfTI format using dcm2niix (https://github.com/
rordenlab/dcm2niix) to be processed by using FSL (https://fsl.
fmrib.ox.ac.uk/fsl). For the macrostructural evaluation, brain vol-
umes were segmented using the FMRIB Automated Segmentation
Tool (FAST; https://github.com/scitran-apps/fsl-fast)23 into their

3 major components: gray matter (GM),
white matter (WM) and cerebrospinal
fluid (CSF). For all subsequent analyses,
GM and WM volumes were considered
together, normalized for the total intra-
cranial volume (as the sum of GM,WM,
and CSF), to take the head size into
account. For the microstructural evalu-
ation, diffusion MR images underwent
denoising, unringing, and eddy cur-
rent correction, followed by tensor fit-
ting to compute fractional anisotropy
(FA) maps as the main index of micro-
structural damage.24-27 The obtained
FA maps were linearly registered to 3D
T1-weighted volumes, with these latter
registered to the standard Montreal
Neurological Institute (MNI) space
through a 2-stage registration process,
with a linear followed by a nonlinear
transformation. The corresponding trans-
formation matrices were then inverted to
register an atlas of the vascular territories
available in the MNI space to subject-
level scans28,29 and to extract brain vol-
umes and mean FA values of the poste-
rior cerebral artery (PCA) territory.28,29

A graphic representation of these proc-
essing steps is available in Fig 3.

Statistical Analysis
To assess both the inter- and the intra-
reader agreements, we performed a 2-

way mixed intraclass correlation coefficient (ICC) analysis with
absolute agreement. According to the literature,30 values .0.9
were interpreted as a proxy for an excellent reliability, while val-
ues ,0.5 were indicative of poor reliability. Values ranging from
0.5 to 0.75 and from 0.75 to 0.9 were interpreted as indices of
moderate and good reliability, respectively.

Possible correlations between MRA metrics and demographic
(age), clinical (MSSI at baseline, FASTEX at follow-up), labora-
tory (residual a-galactosidase A activity and LysoGb3 levels), and
imaging (global Fazekas score as well as volumes and FA of the
posterior circulation) variables were probed via partial correlation
analysis, age- and sex-corrected as appropriate.

Possible differences in terms of MRA variables between
patients with FD with a less pronounced or more severe clinical
involvement, either according to the general MSSI scale or its
neurologic subscore, were probed via general linear model, age-
and sex-corrected.

In the subgroup of subjects with a follow-up MR scan avail-
able, possible differences in terms of BA diameters and TI
between baseline and follow-up data were probed via paired t
tests. Furthermore, we tested whether MRA variables at baseline
were independent predictors of the FASTEX score recorded at
the follow-up examination, to investigate the possible prognos-
tic role of these measures, via linear regression analysis. Finally,

FIG 1. Flow chart showing how the final number of patients included in this study was reached.
VA indicates vertebral artery.
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the possible association between MRA metrics and macro- and
microstructural indices of damage of the posterior circulation
were tested, similar to the baseline data, via partial correlation
analysis, age- and sex-corrected.

All statistical analyses were performed using the SPSS
(Statistical Package for Social Sciences, Version 25.0; IBM) software

and corrected for multiple comparisons via Bonferroni correction
with a statistical threshold equal to 0.0045 (as 0.05/11, given that
we probed 11 different variables: age, mean BA diameter, TI, MSSI
scale and its neurologic sub-score, FASTEX score, residual enzyme
activity, LysoGb3 levels, Fazekas score, and macro- and micro-
structural metrics of the PCA vascular territories).

The Reporting Recommendations for Tumor Marker Prognostic
Studies (REMARK) checklist (https://cdn.amegroups.cn/journals/
pbpc/files/journals/3/articles/67393/public/67393-PB4-4751-R1.
pdf) for this study can be found in the Online Supplementary Data.

RESULTS
A final number of 53 subjects with FD (age, 40.7 [SD, 12.4] years,
male/female ratio¼ 23:30), all with classic or late-onset pathogenic
mutations according to ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/) and all under enzyme-replacement therapy (44/53,
83.0%) or chaperone therapy (5/53, 9.4%) with the exception of
only 4 patients (4/53, 7.6%) were included in this study (Fig 1).
For a subgroup of 20 patients (42.1 [SD, 10.1] years at baseline,
male/female ratio ¼ 9:11), a follow-up MR scan was also avail-
able (mean follow-up time, 28 [SD, 8] months). Demographic
and clinical data of the subjects included in the analyses are
available in Table 1.

The ICC analysis of the BA diameter showed a moderate
agreement between the less-experienced reader and the remain-
ing 2 (0.69 and 0.72, respectively), with this value increased to
0.87 (suggesting a good-but-not-excellent agreement) between
the 2 more experienced readers. On the other hand, the ICC anal-
ysis of the TI had a poor reliability of this measure between the
less-experienced reader and the remaining 2 (0.34 and 0.46,
respectively). Similar to the findings of the BA diameter analysis,
this value increased to a moderate agreement (0.65) between the
2 more-experienced readers. Finally, the intrareader ICC analysis

FIG 2. An example of the posterior circulation vessel measurements
evaluated in this study. In the left panel (A), an MIP coronal MPR of
the TOF sequence acquired in this study shows how the curved (thick
dashed black line) and linear length (straight black line) measures
were traced with these 2 measures that were combined to calculate
the TI. In the right panels, 3 axial MPRs at 3 different levels of the
BA (highest, B; intermediate, C; and lower, D, portions correspond-
ing to the thin dashed black lines in A), show where the 3 axial
diameters of this vessel were obtained to calculate the mean BA
diameter for each patient.

FIG 3. Workflow of the main processing steps performed to obtain macro- and microstructural indices of damage of the posterior circulation.
T1w indicates T1-weighted; dMRI, diffusion MR imaging.
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showed a moderate agreement (0.65) for the mean BA diameter,
with an excellent agreement (0.99) for the TI. Results of this anal-
ysis can be found in the Online Supplemental Data.

In the whole group of patients with FD, we found a mean BA
diameter equal to 3.3 [SD, 0.5] mm, with this metric showing no
significant correlation with age (P ¼ .01, r ¼ 0.35). The mean
curved and linear lengths of the BA were 29.8 [SD, 5.0] mm and
28.7 [SD, 4.4] mm, respectively, with a resulting mean TI of 0.04
[SD, 0.04] not showing a significant correlation with age (P ¼
.06, r ¼ 0.26). Patients with a more severe disease (according to
the MSSI) were not different in terms of mean BA diameter (P ¼
.08) or TI (P ¼ .03) compared with subjects with a relative multi-
organ preservation. Similarly, patients with FD with a more pro-
nounced CNS involvement were not different compared with
subjects with a less severe neurologic phenotype for any of the 2
tested MRA variables (P¼ .19 and P¼ .32, respectively).

When the possible pathophysiologic and clinical counterparts
of mean BA diameter changes were probed, no significant corre-
lations were found between this value and the global Fazekas
score (P ¼ .18, r ¼ 0.19), as well as macro- and microstructural
metrics of the PCA vascular territories, expressed, respectively, as
volumes (P ¼ .51, r ¼ 0.09) and mean FA values (P ¼ .85, r ¼
�0.03). Similarly, no significant correlations were found between
the TI and global Fazekas score (P¼ .81, r ¼ 0.03), mean FA val-
ues (P¼ .09, r ¼ 0.24), and volumes (P¼ .22, r ¼ �0.17).

When the possible clinical counterpart of posterior circulation
abnormalities was probed, no significant correlations were found
between the BA diameter and the MSSI neurologic subscore (P ¼
.18, r ¼ 0.19), FASTEX score (P ¼ .06, r ¼ 0.27), residual
enzyme activity (P ¼ .40, r ¼ �0.12), or LysoGb3 levels (P ¼
.03, r ¼ 0.31), while a significant correlation was found with the
general MSSI scale (P ¼ .003, r ¼ �0.40). Similarly, no correla-
tions emerged between the TI and MSSI scale (P ¼ .34, r ¼
0.14), the MSSI neurologic subscore (P ¼ .45, r ¼ 0.11), the
FASTEX score (P ¼ .19, r ¼ 0.19), residual enzyme activity (P ¼
.44, r ¼ �0.11), or LysoGb3 levels (P¼ .68, r ¼ �0.06).

In the subgroup of subjects with available follow-up MRI
scans, MRA metrics showed a substantial stability across time,
without a significant difference between baseline and follow-up
examinations for both the mean BA diameter (P ¼ .84) and TI
(P ¼ .70). Furthermore, the linear regression analysis showed
that neither the BA diameter (P ¼ .42, b ¼ 0.20, [95% CI,
�0.47–1.06]) nor the TI (P ¼ .66, b ¼ 0.11, [95% CI, �7.81–
11.92]) at baseline proved to be an independent predictor of the
FASTEX score at follow-up. Finally, no correlations were found
between mean BA diameter values and both macro- and micro-
structural metrics of the PCA vascular territories, expressed,
respectively, as volumes (P ¼ .82, r ¼ 0.06) and mean FA values
(P ¼ .62, r ¼ 0.13). A similar result was found when the TI was
correlated with volumes (P¼ .99, r ¼ �0.002) and mean FA val-
ues (P¼ .13, r ¼ 0.37) of the posterior circulation.

A complete list of the results of the MRI evaluation with linear
measurements collected by the 3 readers is shown in Table 2.

DISCUSSION
This study investigated the presence of morphologic alterations
of the vertebrobasilar system in patients with FD, applying several
measurements previously proposed in the literature but failing to
demonstrate any significant correlation between morphologic
alterations of the BA and the macro- or microstructure of the
posterior circulation, as well as any clinical outcome, either at a
cross-sectional or longitudinal evaluation.

The search for a reliable MR biomarker in FD is an unmet
need. Different neuroradiologic features have been reported in
these patients, but none has proved to be, to date, reliably useful
for either diagnostic or prognostic purposes.11 These include the
pulvinar sign, which went from being considered pathognomonic
of FD to being today accepted as a rare nonspecific sign of this
condition,31,32 and the common, but extremely aspecific, WM
hyperintensities, also in the light of some recent literature
showing widespread microstructural WM changes extending

Table 1: Demographic and clinical data of the subjectsa

Age (yr)
Sex

(Male/Female)
Residual Enzyme Activity

(lmol/L blood/h)
LysoGb3
(ng/mL) MSSI FASTEX

Patients included in the baseline
analysis (n¼ 53)

40.7 (SD, 12.4) 23/30 1.8 (SD, 1.6) 5.5 (SD, 8.3) 12 (4–52) 6 (1–13)

Patients included in the follow-up
analysis (n¼ 20, first time point)

42.1 (SD, 10.1) 9/11 2.1 (SD, 1.7) 7.8 (SD, 12.4) 13 (5–47) 8 (1–13)

Patients included in the follow-up
analysis (n¼ 20, second time point)

44.6 (SD, 9.8) 9/11 2.1 (SD, 1.7) 7.8 (SD, 12.4) 13 (5–47) 8 (1–14)

a Ages, residual enzyme activity, and LysoGb3 levels are reported as mean (SD). MSSI and FASTEX scores are presented as median values (with ranges).

Table 2: Results of the MRI analysesa

Fazekas Score BA Diameter TI
Normalized Volumes of
the PCA Territories

FA Values of
PCA Territories

Patients included in the baseline
analysis (n¼ 53)

0 (0–2) 3.3 (SD, 0.5) 0.04 (SD, 0.04) 0.07 (SD, 0.003) 0.20 (SD, 0.01)

Patients included in the follow-up
analysis (n¼ 20, first time point)

1 (0–2) 3.4 (SD, 0.6) 0.04 (SD, 0.05) 0.07 (SD, 0.003) 0.20 (SD, 0.01)

Patients included in the follow-up
analysis (n¼ 20, second time point)

1 (0–3) 3.4 (SD, 0.6) 0.05 (SD, 0.05) 0.08 (SD, 0.004) 0.20 (SD, 0.01)

a Basilar artery diameters are expressed in millimeters, while all other variables are adimensional. All results are reported as mean (SD) with the exception of Fazekas
scores that are presented as median values (with ranges).
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beyond conventional MRI hyperintensities.3,5,8 In this context
of an absence of reliable imaging biomarkers, alterations of the pos-
terior circulation (namely elongation, tortuosity, and ectasia, espe-
cially of the BA) have been proposed and relatively accepted as the
most prominent neuroradiologic findings in FD. These have been
hypothesized to be related to an accumulation of Gb3 within the ar-
terial smooth-muscle cells that may cause a change in the nitric ox-
ide pathway, which, in turn, may lead to a progressive malfunction
of the media layer with direct repercussions on vessel anatomy.33,34

The real prevalence of this finding is still debated in the literature,
due to the rarity of the disease as well as the lack of standardization
about acquisition protocols and/or image-processing. Furthermore,
there is still a lack of information about the possible (if any) clinical
consequences or pathophysiologic correlates of this alteration. This
study fits into this framework with the aim of evaluating, in a large
sample, whether morphologic measurements of the BA in FD are
reliable among readers with different expertise and then investigat-
ing the correlation between changes in BA diameters and clinical
data and macro- or microstructural changes in the posterior circu-
lation both cross-sectional and across time.

In contrast with previous literature,14 no meaningful increase
in the mean BA diameter was observed in our sample. Several
explanations can be found for this result, with the first being the
use of a different software for image evaluation (ie, one freely
available in our study versus a commercially available software in
the study by Manara et al14). Furthermore, in our study, a correc-
tion for multiple comparisons was used to reduce the possibility
of type I errors. Finally, TOF sequences in this study were
acquired at 3T, compared with those acquired at 1.5T, with the
known better quality of these images acquired at higher field
strengths.35 A reliable biomarker for both diagnostic and prog-
nostic purposes must be easily accessible and reproducible across
centers, characteristics that do not seem to emerge for BA evalua-
tion in the replicative section of our study. Indeed, technical vali-
dation is one of the crucial steps in the roadmap to follow to
identify a possible biomarker.36 Furthermore, reproducibility is a
potential issue, given that measurements performed using differ-
ent equipment, different software, or operators, or at different
sites and times should not show any significant variation in order
to be considered as a reliable biomarker.36 In this light, our results
suggest that the BA measurement is prone to a high variability
both within and between readers, further mitigating the routine
use in clinical practice of this MR feature.

Besides these considerations on BA diameters and tortuosity
advocating against the interpretation of posterior circulation
changes as a typical feature of FD, we investigated the possible
pathophysiologic meaning of vessel abnormalities and failed to
find any possible association between BA measurement and both
macro- and microstructural changes of the posterior circulation
parenchymal territories. It has been widely demonstrated that in
cerebrovascular conditions, MRI is very sensitive in highlighting
alterations in both the brain macrostructure (as in stroke37,38) and
microstructure (as in cerebral small-vessel disease39,40). Absence of
a correlation with these indices of damage, indirectly supported by
an MR perfusion study that demonstrated the absence of an
increased flow in the posterior circulation areas41 was also found
in the longitudinal analysis, in which a lack of significant changes

over time in BA metrics was also coupled with a substantial stabil-
ity of GM and WM structures in the posterior circulation. If the
stability across time of the BA diameter and posterior GM volumes
is in line with previous evidence,42,43 a recent study showed the
occurrence of changes in the ADC maps over time.44 Nonetheless,
in this study, maps derived from a more comprehensive technique
such as DTI were used, with ADC values that are known to have a
relatively lower reliability compared with FA.45 Furthermore and
different from previous studies, all acquisitions in our study were
performed using the same scanner, with the same software version,
coil, and acquisition protocol, thus virtually nullifying any possible
bias deriving from these technical issues. Nonetheless, because sig-
nificant WM microstructural damage is known to occur in this
condition,3,5,8,46 future longitudinal studies are warranted to more
thoroughly understand the role of these changes over time, given
that diffusion MR imaging has proved to be a sensitive biomarker
for monitoring the progression of WM damage.47

Finally, the absence of a correlation with clinical and bio-
chemical markers of the disease, either at a cross-sectional and
longitudinal evaluation, excludes a possible use of the investigated
vessel abnormalities as a prognostic biomarker.

Despite its several strengths, this study presents some limita-
tions, with the first being a lack of a control group, preventing us
from defining the exact extent of howmuch the BA diameter might
have differed in patients with FD. Nevertheless, our thorough ex-
amination of possible clinimetric counterparts of these posterior
circulation changes does not rely on the evaluation of a control
group, with the inclusion of a longitudinal analysis that even further
mitigates this limitation. Another possible setback of this study
might derive from the exclusion of patients with stroke and TIA,
potentially leading to a selection bias toward patients with less-pro-
nounced brain involvement. Nonetheless, stroke is associated with
an increased BA diameter also in subjects without FD,48 a result
that also partly questions whether the previously observed increased
BA diameter in FD might be related to a “general” vasculopathy, as
the one found in subjects without FD affected by a stroke. Finally,
another intrinsic limitation of this work resides in the challenges
derived from measuring vessels on MRA without intensity-normal-
ization or procedures for vessel wall identification.14

CONCLUSIONS
Our results suggest that evaluation of the posterior circulation
anatomy in FD might not provide a useful or reliable biomarker
in this condition. These metrics show a low reliability within the
same reader and between readers of different expertise and a lack
of macro- and microstructural brain correlates, and they do not
show a significant association with clinical findings at either a
cross-sectional or a longitudinal evaluation. Therefore, the search
for a new, possible quantitative, diagnostic, and prognostic neu-
roradiologic biomarker in FD remains an urgent need.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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