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WHITE PAPER

Critical Appraisal of Artificial Intelligence–Enabled Imaging
Tools Using the Levels of Evidence System

N. Pham, V. Hill, A. Rauschecker, Y. Lui, S. Niogi, C.G. Fillipi, P. Chang, G. Zaharchuk, and M. Wintermark

ABSTRACT

SUMMARY: Clinical adoption of an artificial intelligence–enabled imaging tool requires critical appraisal of its life cycle from develop-
ment to implementation by using a systematic, standardized, and objective approach that can verify both its technical and clinical
efficacy. Toward this concerted effort, the ASFNR/ASNR Artificial Intelligence Workshop Technology Working Group is proposing a
hierarchal evaluation system based on the quality, type, and amount of scientific evidence that the artificial intelligence–enabled tool
can demonstrate for each component of its life cycle. The current proposal is modeled after the levels of evidence in medicine, with
the uppermost level of the hierarchy showing the strongest evidence for potential impact on patient care and health care outcomes.
The intended goal of establishing an evidence-based evaluation system is to encourage transparency, foster an understanding of the
creation of artificial intelligence tools and the artificial intelligence decision-making process, and to report the relevant data on the
efficacy of artificial intelligence tools that are developed. The proposed system is an essential step in working toward a more formal-
ized, clinically validated, and regulated framework for the safe and effective deployment of artificial intelligence imaging applications
that will be used in clinical practice.

ABBREVIATIONS: AI ¼ artificial intelligence; HIPPA ¼ Health Insurance Portability and Accountability Act

As artificial intelligence (AI) reimagines many facets of health
care, radiology will be a leading force for developing and lev-

eraging AI-based imaging technologies.1-3 This past decade saw a
dramatic rise in the number of commercially available AI prod-
ucts receiving US FDA approval for clinical use in imaging.4 As
of October 2022, there are 521 FDA-authorized AI-enabled medi-
cal devices, of which 75.2% are for radiology use.5 Of these, neu-
roimaging applications comprise a large share, with estimates of
up to 40% of products on the market.6 With the increasing avail-
ability of AI software, a systematic method of integrating these
tools into a clinically validated and regulated framework is neces-
sary for the safe and effective deployment of medical imaging AI
applications in routine clinical patient care. Unlike AI in other

industries, such as entertainment and advertising, which can
afford to be tolerant of errors, errors in medicine can be fatal.

Adoption of an AI-enabled tool requires critical appraisal of
its life cycle from development to implementation, with careful
consideration of the existing scientific evidence supporting its
clinical utility. However, standardized objective metrics to quan-
titate AI quality and clinical utility are currently lacking, limiting
the fair and accurate evaluation and comparison of different
AI-enabled tools, especially when multiple products exist for the
same clinical task.7

These are not new issues as they also affect other medical
imaging software products, but the number and diversity of AI-
enabled tools suddenly now hitting the market makes it a timely
moment to consider practical and unbiased ways of assessing
such tools. Thus, the ASFNR/ASNR has created an AI workshop
technology working group with the goal of providing a practical
approach for evaluating the potential effectiveness of AI technol-
ogy in clinical practice.

Toward this goal, here we introduce an evaluation system
using hierarchal levels of evidence that reflect the rigor of scien-
tific data (Figure). Demonstration of clinical efficacy and value, at
the pinnacle of this evaluation system, is the most important fac-
tor for clinical adoption.

Different points in the imaging workflow can be augmented
by AI-enabled tools, with a range of clinical applications including
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but not limited to administrative, operational, patient, and image
centered tasks.8-10 For the purposes of this white paper, the hierar-
chal levels of evidence system is most useful for imaging and
patient-related AI applications. However, the main principles can
be generalized to other applications.

Finally, the radiologist continues to be an instrumental gate-
keeper of patient care quality and safety, particularly now as we
enter the era of AI. As clinical domain experts, radiologists pro-
vide important oversight on the effective use of AI software in the
clinical setting.11 To better position the radiologist in this role, this
white paper presents a structured method of guidance on the criti-
cal appraisal of AI software using the levels of evidence system.

Levels of Evidence
To date, there are no agreed upon levels of evidence needed for the
evaluation of AI-enabled tools; thus, the already established medi-
cine model provides a practical starting point for the development
of such a systematic process.12 We propose a hierarchy of levels of
evidence reflecting the critical elements of an AI product’s life cycle
from development to the clinical implementation phase (Figure).

The two levels at the base of the hierarchy, levels 6 and 7, are
considered fundamental requirements that an AI product must
meet before further consideration for implementation in the clin-
ical workflow. For example, an AI product must comply with cur-
rent legal and regulatory requirements (level 7) such as Health
Insurance Portability and Accountability Act (HIPPA) and FDA
clearance. Thereafter, it must be compatible with the information
technology infrastructure (level 6) at the site where it will be
deployed, before proceeding with other requirements listed in the
hierarchy.

Further description of the levels of evidence from 1 to 7 is
detailed below, with level 1 denoting the highest quality and
strongest evidence for potential impact on patient care and health
care outcomes. In addition, Table 1 provides an abbreviated sum-
mary, while Table 2 provides an expanded summary of each com-
ponent of the evaluation system.

Data Quality and AI Model Development
AI models should be developed from data that are large, diverse,
and reflective of the intended population. However, in practice,

access to comprehensive and “big” data
is challenging, and training is often per-
formed on limited data.13 This introdu-
ces bias that can affect reproducibility,
generalizability, and performance out-
side the data range on which the model
was trained. Thus, peer-reviewed publi-
cations including information on the
source and characteristics of the data
used to train, validate, and test the AI
model can help end-users determine
overall compatibility with the target
patient population of interest.14-16

AI companies and developers do
not typically publicly report detailed
information on data used to develop
or validate algorithms, despite having
undergone the necessary FDA clear-
ance process, limiting the ability of
end-users to make informed decisions

FIGURE. Levels of evidence. Proposed 7 levels of evidence for the systematic evaluation of an
AI product’s quality and effectiveness in the clinical setting.

Table 1: Summary of levels of evidence
Levels of Evidence Element Types of Evidence
Level 1 Clinical efficacy One prospective or randomized clinical trial or meta-analysis
Level 2 Bias and error mitigation At least 2 independent retrospective studies separate from

original institution
Level 3 Reproducibility and generalizability At least 2 retrospective studies with at least 1 from an institution

independent of the original institution
Level 4 Technical efficacy Two retrospective studies from the same institution
Level 5A Data quality and AI model development

with external testing
One retrospective study with internal and external data used for
final performance reporting

Level 5B Data quality and AI model development
with internal testing

One retrospective study with only internal data used for final
performance reporting

Level 6 Interoperability and integration into the
IT infrastructure

AI company can provide a plan including interoperability
standards for integration into the existing radiology and
hospital digital information systems

Level 7 Legal and regulatory frameworks AI-enabled tool is compliant with current patient data protection,
security, privacy, HIPAA, and government regulations

Note:—IT indicates information technology.
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Table 2: Detailed summary of levels of evidencea

Levels of
Evidence Element Description Types of Evidence Significance
Level 1 Clinical efficacy Clinical efficacy is the

assessment of how the
AI tool impacts patient
care and health care
outcomes

AI tool has been used in at least 1
prospective study, randomized
clinical trial, or meta-analysis
demonstrating potential for
improved patient care and
health care outcomes, including
improved mortality, quality of
life, morbidity, or reduced
health care cost

Although measuring clinical
efficacy and added value for
an early AI technology is
challenging, it remains the
single most important feature
for clinical success and
adoption

Level 2 Bias and error
mitigation

Biases of different types
invariably exist in all
data and can lead to AI
modeling errors when
applied to patients in
different clinical settings

AI model can adapt to at least 2
separate institutions different
from where it was initially
developed (2 independent
retrospective studies)

AND
Peer-reviewed results from
those retrospective studies
from above are available
describing the various
populations used to test the AI
model, including age ranges,
sex, and types of scanners

AND
AI company has a process to
continuously incorporate
feedback and improve their
model (postdeployment
monitoring)

Al related errors in clinical
practice may be harmful to
patients; thus, the AI tool
should be tested at multiple
different sites, with differing
patient demographics, disease
prevalence, and imaging
vendors to determine
operational characteristics,
generalizability, and potential
pitfalls

As clinical and patient care
standards are constantly
evolving, AI models may need
routine surveillance and updates
for performance and data drift

Level 3 Reproducibility and
generalizability

AI-enabled tool can be
applied to different
clinical settings, while
demonstrating
consistent high-quality
results

At least 2 retrospective studies
showing that the AI tool has
performance characteristics
similar to or alternative
methods in the literature

AND
At least 1 independent study
different from where the AI
tool was developed to
demonstrate that the AI tool
can adapt to at least 1 different
institution

A multi-institution approach
supports reproducibility and
generalizability of the AI tool

Level 4 Technical efficacy Technical efficacy is the
assessment that the AI
model correctly
performs the task that it
was trained to do

AI model performance has been
shown in 2 retrospective
studies to have potential
clinical impact compared with
similar or alternative methods
in the literature

AND
These retrospective studies can
be from the same institution

Recent investigations suggest
that less than 40% of AI
models have peer-reviewed
evidence available on their
efficacy6

Level 5A Data quality and AI
model development
with external testing

AI models are prone to
overfitting and an
external test data set
during development
should be used to
report final performance
metrics

Level 5B evidence as described
with an external test set used
for performance validation

Inclusion of an external data set
during the development phase
supports the generalizability of
the AI tool

Level 5B Data quality and AI
model development
with internal testing

AI company should
provide peer-reviewed
information about the
characteristics of the
data used to develop
the AI model

AI company can explain
how the AI model

One retrospective study showing
the following:

Peer-reviewed results detailing
the inclusion/exclusion criteria,
source, and type of data used
to train, validate, and test the
AI model

AND

Data characteristics will influence
the suitability and applicability
of the AI model to the target
patient population of interest

Continued on next page
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about these products. Thus, the emphasis on more than 1 peer-
reviewed publication in this white paper encourages some level
of independent, critical, and structured analysis to provide sci-
entific evidence for verifying the intended use and clinical
impact of the AI product.

At the very least, even if a product does not meet this level of evi-
dence expectation, it is most responsible for a company to provide
information about their patient population, including demographic
characteristics, model development and validation methods, and
indicators of statistical efficacy. Purchasers and end-users should
expect and require statistical evidence and, preferably, consider these
levels of evidence as indicators for the strength of a tool’s methodo-
logical quality of design, validity, and applicability to patient care.

Barriers to improving AI transparency include competing fi-
nancial incentives among developers, data privacy and sharing
restrictions, and some degree of acceptance of the “black box” na-
ture of AI-based solutions. To overcome these limitations, initia-
tives have been proposed to establish minimum data reporting
standards for AI in health care including but not limited to
MINIMAR (MINimum Information for Medical AI Reporting),
CONSORT-AI (Consolidated Standard of Reporting Trials-
Artificial Intelligence), and CLAIM (Checklist for Artificial
Intelligence in Medical Imaging).17-19 Others have also introduced
checklists, recommendations, and guidelines toward assessing the
suitability of AI-based tools in the health care environment.11,20-22

Our proposal utilizing the levels of evidence builds on these
ongoing initiatives, with a greater focus on the availability of peer-
reviewed evidence and publications, to improve confidence and
trust for all stakeholders using AI-based tools.

Selection of a quality standard of reference during the develop-
ment phase is critical for an accurate and fair comparison of the AI
model’s performance against the current standard of practice.23,24

After all, the adoption of any clinical tool relies on scientific evi-
dence that it imparts some advantage over an already existing
approach to the problem. Using subpar proxies for the intended
clinical task may overestimate the actual performance of the AI
model in the clinical setting. For example, assessment of an AI-
enabled tool for the detection of intracranial hemorrhage might
utilize turnaround time in outpatients with unexpected bleeds as a
metric rather than reporting the overall accuracy of the tool.15,25

To evaluate potential real-world clinical efficacy and generaliz-
ability, it is important to gauge an AI tool’s performance on an
external data set. Selection bias and reliance on retrospective data
can lead to an AI model that too closely aligns with the original
data and lacks the ability to generalize to new and unseen data. A
recent study of deep learning algorithms for image-based radio-
logic diagnosis suggests that most will demonstrate diminished
algorithm performance on the external data set, with some report-
ing a substantial performance decrease.25

External validation is increasingly recognized as a critical step
for evaluating model performance but has been employed in rela-
tively few published studies.26 The latter may be attributed to the
challenges of obtaining an appropriate external data set. However,
nonetheless, it remains important to use an external testing data
set, separate from the original data used to develop the model, to
calculate final performance metrics.15,25 This criterion is used to
differentiate level 5A and level 5B. Potential sources of external

Table 2: Continued
Levels of
Evidence Element Description Types of Evidence Significance

makes decisions that are
relevant to patient care

Peer-reviewed results
describing how the AI model
was developed, including use
of a standard of reference that
is widely accepted for the
intended clinical task

AND
No final external test set was
used for final performance
reporting

Selection of a high-quality
standard of reference is
important for accurately
comparing the peak
performance of the AI model
to that of current clinical
practice

Level 6 Interoperability and
integration into the
IT infrastructure

AI software should
integrate seamlessly into
the hospital information
system, radiology
information system, and
PACS to be clinically
useful

AI company can provide a plan
including interoperability
standards for integration into
the existing radiology and
hospital digital information
systems

AI company can provide on-site
demonstration of clinical
integration and potential
impact on workflow before full
deployment

Successful clinical
implementation of an AI tool
requires close collaboration
between the AI company and
site experts, including
radiologists, referring
physicians, data scientists, and
information technologists

Real time demonstration is an
important mechanism for
identifying potential site-
specific problems

Level 7 Legal and regulatory
frameworks

Patient consent, privacy,
and confidentiality laws
will vary depending on
state, local, and
institutional regulations

AI-enabled tool is compliant with
current patient data
protection, security, privacy,
HIPAA, and government
regulations

AI companies, health care
systems, and radiologists are
key gatekeepers of patient
autonomy, privacy, and safety

a Appropriate reporting of AI model performance will depend on the task; however, examples of relevant statistical measures include ROC, sensitivity, specificity, and
positive and negative predictive values, among others.
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data includes information from a different institution or public
data bases. Further rigorous external verification of performance,
generalization, and reproducibility can be tested through a multi-
institution approach.

To provide appropriate oversight on how AI decisions will
impact patients, radiologists must encourage AI vendors to explain
steps in the AI product’s life cycle, in a manner that would allow
for greater understandability and interpretability of its results. Of
particular interest are details of the steps taken to reduce bias and
ensure quality during the development process.27 Detecting and
mitigating bias in a machine learning model can be one of the
most effort-intensive steps in the development process, as bias
may be introduced at any point in the product’s life cycle.
Various approaches to reducing bias include emphasis on data
transparency, mathematical approaches to de-biasing, interpret-
ability/explainability of the decision-making process, and post-
deployment surveillance strategies.28

Technical Efficacy versus Clinical Efficacy
There is a need to verify both the technical and clinical efficacy
of any AI-enabled tool before clinical implementation.29,30

Interestingly, a study in 2020 found that fewer than 40% of com-
mercially available AI products had published, peer-reviewed evi-
dence available demonstrating their efficacy.4 Receiving FDA
clearance for clinical use in radiology in no way guarantees clini-
cal utility or clinical efficacy of the product.

Technical efficacy is defined by the ability of the AI model to
correctly perform the task for which it was trained (level 4).31

Scientific evidence that supports technical efficacy is often in the
form of retrospective studies and includes peer-reviewed infor-
mation about the AI model’s data quality, development, and per-
formance metrics, benchmarked against similar or alternatively
accepted methods in the literature. For example, an automated
brain tumor segmentation task may require initial published
results on the Dice coefficient or Jaccard index score to demon-
strate technical efficacy. Subsequently, it would be important to
provide scientific evidence that performance is reproducible and
generalizable across different clinical institutions, patient popula-
tions, MR imaging field strengths, and imaging vendors.25

Clinical efficacy is defined by the ability of the AI model to
change patient care and health care outcomes (level 1). Therefore,
this requires a higher level of evidence, often in the form of pro-
spective and randomized clinical trials to prove that the AI-enabled
tool can lead to results that are better than standard level of care. It
is important to note that technical efficacy does not equate to clini-
cal efficacy.29-32 For example, performance metrics such as repro-
ducibility, sensitivity, specificity, positive and negative predictive
values, and area under the curve are able to summarize AI model
performance well but provide little information on how it could
change patient outcome. Thus, despite impressive and exciting AI
research, we continue to see relatively slow adoption of this tech-
nology to the health care setting. This is partly attributed to the
paucity of scientific evidence supporting clinical efficacy.33

Bias and Error Mitigation
AI clinical errors often reflect the interplay of different types of
biases introduced by the imperfect process of collecting, training,

and applying data (level 2).16,34,35 Additionally AI-enabled tools
can project societal and historical biases that may further exacer-
bate existing inequities related to sex, age, and socioeconomic dif-
ferences, among others. Thus, it is important to have a systematic
approach for monitoring performance variances in different
patient populations.36,37 Other mechanisms that can be used to
mitigate errors include ensuring data quality, as described above;
verifying generalizability and reproducibility across different clin-
ical sites (level 3); and careful consideration of epidemiological
and statistical factors, such as disease prevalence, that can impact
AI performance on a specific population.25,31 A major goal of this
white paper is to emphasize the importance of peer-reviewed pub-
lications, including robust internal and external validation during
model development and subsequent validation at other sites.
Differing feature distribution among clinical sites and patient pop-
ulations such as sex, ethnicity, age, socioeconomic condition, geo-
graphic distribution, disease risk factors, imaging equipment, and
image quality can lead to unexpected model performance errors.

Health care is a fluid and dynamic landscape, with new and
evolving clinical practice standards that will require routine
re-evaluation of the performance of the AI-enabled tool. This is
further compounded by the yet to be defined process of how AI
models continuously learn and evolve over time with new data.
Thus, defining a practical mechanism for postdeployment moni-
toring including incorporating an iterative feedback loop between
the radiologist, AI-enabled tool, and AI company during the
implementation phase will be critical for adapting to these changes
and achieving long-term consistent effectiveness.11,29,30,32

Legal and Regulatory Frameworks
Policies pertaining to patient consent, data collection, and data
usage will vary on a state, local, and institutional level. However,
AI companies and health care systems should have standard
operating procedures to maintain HIPPA compliance, patient
data safety, confidentiality, and privacy (level 7).36,38,39

AI-enabled tools can be subjected to different regulatory
requirements, depending on the proposed clinical setting and
intended use. For example, for medically oriented AI-based
tools, the FDA has 3 levels of clearance: the 510(k), premarket
approval, and de novo pathways, each with its own specific cri-
teria, which have been thoroughly explained elsewhere.40

Additionally, many other innovative and experimental AI
research tools are being developed in-house under institutional
internal review board approval outside the purview of govern-
ment oversight.

Of the AI-enabled tools that have gone through FDA review,
most have received FDA 510(k) clearance, which does not require
safety or effectiveness data from clinical trials. Instead, the manu-
facturer can demonstrate that it is substantively equivalent to a
predicate (another FDA-cleared or approved product). Thus, the
emphasis on AI-enabled tools having more than 1 peer-reviewed
publication is necessary in this white paper to encourage an inde-
pendent, critical, and structured analysis of the AI-product. In
contrast, substantially fewer products have gone through the
FDA’s more rigorous premarket approval or, alternatively, the
de novo pathway, which is designed for AI-enabled medical devi-
ces that are not deemed high risk but do not have a predicate.
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Currently, any major changes to an AI-enabled tool will
require resubmission for FDA approval; thus, most AI algorithms
may remain “static” or “locked” after they are introduced into the
market. However, periodic surveillance and refinement of AI
algorithms may be needed to adapt to the evolving health care
environment,41 without going through the full FDA review pro-
cess again. This has prompted the FDA to consider more efficient
and streamlined regulatory pathways to evaluate continuously
learning AI through proposals such as the digital health precerti-
fication program and predetermined change control plan, which
are currently under discussions. Unfortunately, as of now, no of-
ficial process exists for major amendments to an existing AI
algorithm.

The proposed hierarchy levels of evidence can be used to sup-
port an AI product’s life cycle in both the static and continuously
learning environment. For continuous learning AI, there is mo-
bility between the levels of the hierarchy. As an example, once an
AI-enabled tool has established its baseline technical and clinical
efficacy, modifications to the AI algorithm requiring FDA ap-
proval may allow it to move between level 7 and any other upper
levels by providing additional scientific data, since the other levels
have been supported by scientific evidence during its develop-
ment phase.

Interoperability and Integration into the IT Infrastructure
AI software should integrate seamlessly into the hospital informa-
tion system, radiology information system, and PACS to be clini-
cally and functionally useful.30,32 A recent white paper on AI
interoperability in imaging has explored the problems and chal-
lenges that must be addressed to achieve an ecosystem of intero-
perable AI products.42 Until such harmonized standards are
adopted, AI companies will need to provide a clear plan with
defined interoperability standards for integration into the existing
digital infrastructure (level 6).43 The AI vendor should also be able
to provide an on-site demonstration of the clinical tool in action
in real time before full deployment. This will be an important op-
portunity to observe the AI model’s performance on the target
population, impact on workflow, and potential errors in clinical
practice.

Added Clinical Value
It can take decades for health care innovations to become fully
implemented into clinical practice.44 Thus, the full clinical impact
of AI on the health care system is likely to still mature and may
not be completely apparent at the present time. Although chal-
lenging, defining and measuring the added value of an early tech-
nology remains the single most important factor for achieving
clinical success and adoption.2 No current consensus exists on
how to measure the added value of an AI-enabled tool in clinical
practice. However, one approach is to consider the tool’s poten-
tial to improve patient outcomes compared with the cost of
achieving that improvement in a value-based health care sys-
tem:45-47 Value ¼ Patient Outcome/Cost. As emphasized previ-
ously, AI performance accuracy alone does not necessarily lead to
improved patient outcomes; future prospective investigations,
clinical trials, or meta-analyses (level 1 evidence) are needed to
establish such a link. Similarly, AI-enabled tools may reduce cost

to the patient and health care system by guiding clinical decision-
making through a much more evidenced-based approach (ie,
early detection of cerebral ischemia); however, more long-term
investigations are still needed to understand the cost-benefit
ratio. Randomized clinical trials are considered the gold standard
for determining an intervention’s impact on clinical care. Several
recent failures to implement AI-based tools in the clinical setting
have suggested their relevance for selecting AI products with
meaningful clinical benefit, especially given some inherent opac-
ity and incomplete understanding of the mechanistic basis for
how AI models actually make predictions.48,49 Toward establish-
ing scientific evidence for clinical efficacy, several AI-enabled
tools have successfully demonstrated a positive impact on
patient-centered related outcomes in clinical trials (level 1 evi-
dence).50 The proposed hierarchy levels of evidence can be used
to support an AI product’s potential effectiveness and added
value in the context of its available scientific data.

User Cases
To understand how the levels of evidence can be utilized, the fol-
lowing user cases derive from selected real-world applications of
AI-enabled tools in the literature. Employing the levels of evi-
dence can facilitate communication and understanding among
stakeholders regarding the strength of peer-reviewed evidence
available to support that tool’s reported goal and potential clinical
impact.

Level 1 Evidence. Strong scientific evidence exists for the posi-
tive clinical impact of AI-based tools used to guide clinical deci-
sion-making in stroke care.51 Specifically, AI-based ischemic
stroke triage and management have been shown to decrease
patient morbidity and mortality while improving patient func-
tionality through multiple practice-defining clinical trials.52,53

There is also emerging evidence that these tools have the poten-
tial to reduce overall health care costs.54

Level 3 Evidence. AI-based tools can be used to augment aneu-
rysm detection and analysis. In this example, the AI-based tool
has at least 2 retrospective peer-reviewed publications inclusive of
2 or more different institutions.55,56 However, there are currently
no prospective data to assess the clinical impact of such a tool.

Level 5B Evidence. An AI-based tool designed to segment brain
tumors with 1 retrospective study describing model development
and performance without use of an external data set.

In summary, the levels of evidence are an important compo-
nent of evidence-based medicine, and the adoption of such a clas-
sification system can help end-users prioritize information on the
quality of AI products. Most importantly, AI-enabled tools exist
on a spectrum with regard to their scientific rigor, with some
products lacking peer-reviewed publications altogether to those
that have been well-validated through multiple randomized clini-
cal trials. The level of evidence that an AI-enabled tool will need,
of course, will depend on its intended task, as illustrated above.
As with all classification systems, level 1 evidence does not neces-
sarily mean that these data should be accepted as fact while level
5B data should be disregarded. Our goal is to introduce a method
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of scientific scrutiny to address the disconnect between expecta-
tions and reality.

CONCLUSIONS
Barriers to the clinical implementation of AI-enabled tools
include factors related to the lack of understandability of the AI
development and decision-making process, standardized criteria
for comparing product quality and effectiveness, and rigorous
scientific evidence supporting meaningful impact on patient care
and health care outcomes. To overcome some of these challenges,
the ASFNR/ASNR AI Workshop Technology Working Group
has proposed hierarchal levels of evidence to objectively evaluate
the scientific merit and potential effectiveness of AI technologies
in clinical practice.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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