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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Predicting Antiseizure Medication Treatment in Children
with Rare Tuberous Sclerosis Complex–Related Epilepsy

Using Deep Learning
Haifeng Wang, Zhanqi Hu, Dian Jiang, Rongbo Lin, Cailei Zhao, Xia Zhao, Yihang Zhou, Yanjie Zhu,

Hongwu Zeng, Dong Liang, Jianxiang Liao, and Zhicheng Li

ABSTRACT

BACKGROUND AND PURPOSE: Tuberous sclerosis complex disease is a rare, multisystem genetic disease, but appropriate drug
treatment allows many pediatric patients to have positive outcomes. The purpose of this study was to predict the effectiveness
of antiseizure medication treatment in children with tuberous sclerosis complex–related epilepsy.

MATERIALS AND METHODS: We conducted a retrospective study involving 300 children with tuberous sclerosis complex–related
epilepsy. The study included the analysis of clinical data and T2WI and FLAIR images. The clinical data consisted of sex, age of
onset, age at imaging, infantile spasms, and antiseizure medication numbers. To forecast antiseizure medication treatment, we
developed a multitechnique deep learning method called WAE-Net. This method used multicontrast MR imaging and clinical data.
The T2WI and FLAIR images were combined as FLAIR3 to enhance the contrast between tuberous sclerosis complex lesions and
normal brain tissues. We trained a clinical data-based model using a fully connected network with the above-mentioned variables.
After that, a weighted-average ensemble network built from the ResNet3D architecture was created as the final model.

RESULTS: The experiments had shown that age of onset, age at imaging, infantile spasms, and antiseizure medication numbers were
significantly different between the 2 drug-treatment outcomes (P, .05). The hybrid technique of FLAIR3 could accurately localize
tuberous sclerosis complex lesions, and the proposed method achieved the best performance (area under the curve ¼ 0.908 and
accuracy of 0.847) in the testing cohort among the compared methods.

CONCLUSIONS: The proposed method could predict antiseizure medication treatment of children with rare tuberous sclerosis
complex–related epilepsy and could be a strong baseline for future studies.

ABBREVIATIONS: ACC ¼ accuracy; ASM ¼ antiseizure medication; AUC ¼ area under the curve; CNN ¼ convolutional neural network; DCA ¼ decision
curve analysis; FCNN ¼ fully connected neural network; FN ¼ false-negative; FP ¼ false-positive; ReLU ¼ rectified linear unit; ROC ¼ receiver operating charac-
teristic; SEN ¼ sensitivity; SPE ¼ specificity; TN ¼ true-negative; TP ¼ true-positive; TSC ¼ tuberous sclerosis complex; WAE ¼ weighted-average ensemble

Tuberous sclerosis complex (TSC) is a rare genetic disease
that affects multiple organs and is caused by mutations in

the TSC1 or TSC2 genes.1-3 Its incidence is estimated to be 1
in 6000 live births,3,4 and it is commonly associated with seiz-
ures and related neuropsychiatric disorders.5 Epilepsy is the
most prevalent symptom in pediatric patients with TSC,6,7

affecting approximately 85% of them.2,8 The primary objective
of epilepsy treatment in these patients is to control seizures
and enhance their quality of life.3 However,.50% of pediatric
patients with TSC develop drug resistance to antiseizure med-
ication (ASM),9-11 and identifying this resistance can be a
time-consuming process.12 Therefore, investigating predictive
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biomarkers of drug-treatment outcomes for pediatric patients
with epilepsy is an urgent need.

Currently, MR imaging provides excellent tissue contrast,
which is a technique used routinely to diagnose TSC disease.13

Radiologists have difficulty distinguishing patients with pediatric
refractory (resistant seizure) disease from those with seizure-con-
trolled disease because these patients may have similar appearan-
ces in MR imaging. Recent artificial intelligence tools have been
used to help radiologists assess the cortical tubers in rare pediatric
TSC disease, including from MR images.14 Deep learning has
promoted the progress of 3D volumetric classification.15-17

Previous studies have shown the ability of deep convolutional
neural network (CNN) models to classify lung cancer and bone
lesions on MR imaging with high accuracy.18,19 In addition, sev-
eral studies have begun to combine images of multicontrast MR
imaging, by using the complementary visual information from
the multicontrast MR imaging to improve the performance of the
classification.20,21 However, these studies required many images
to train the CNNs, which were challenging to obtain in rare dis-
orders like pediatric TSC disease. Until now, few studies have
used deep learning methods to predict outcomes of drug treat-
ment for epilepsy in rare pediatric TSC disease.

Because the quantity of patients with rare pediatric TSC is
limited, some studies have only used some machine learning
techniques for the prediction of epilepsy drug-treatment out-
comes. For example, An et al22 predicted patients with drug-
resistant epilepsy at the time of the first ASM prescription and
achieved an area under curve (AUC) of 0.764 with random for-
ests. However, their work mainly focused on patients with general
epilepsy instead of pediatric patients with rare TSC. Recently,
lesion location and type of information features of MR imaging
have been identified to predict epilepsy drug-treatment outcomes
in rare pediatric TSC disease with multilayer perceptron and
achieved an AUC of 0.812.12 However, the features of MR imaging
were also typically extracted manually, possibly introducing errors,
and the description of these features was usually qualitative, subjec-
tive, and nonspecific. With current state-of-the-art machine learn-
ing methods, it may be possible to achieve better performance in
automated drug-treatment outcome prediction through analysis of
advanced imaging. Until now, there are not any state-of-the-art
machine learning methods that can achieve an AUC of approxi-
mately 0.90 to predict epilepsy drug-treatment outcomes in rare
pediatric TSC applications. In this study, we aimed to develop a
deep learning method for predicting the outcomes of epilepsy drug
treatment in children with the rare TSC disease.

MATERIALS AND METHODS
Network Architectures of Imaging Data
Deep learning, especially CNNs, has been widely used in medical
image processing.23-25 Among the different variants of CNNs, 2D
Residual Network (ResNet: https://keras.io/api/applications/
resnet/) has shown remarkable performance in image classifica-
tion.26 It is composed of residual blocks that are substantially
deeper. In addition, the residual networks are easier to optimize
and can gain accuracy from significantly increased depth.
Additionally, although most imaging studies have used 2D CNNs
as their model architecture, some studies have proposed 3D

CNNs that can fully use the spatial features of MR imaging and
achieve better performance.27-29

Therefore, we have constructed a 3D CNN architecture based
on the idea of ResNet,26 which is a more developed model based
on 2D-ResNet. The MR image–based models were the 3D version
of the network modified on 2D-ResNet. ResNet3D models
(https://paperswithcode.com/lib/torchvision/resnet-3d) were used
for feature-extraction from imaging data. The ResNet3D classify-
ing layer was replaced with an average pooling layer and a fully
connected layer to perform the binary classification task. The
neural network structure of ResNet3D is shown in Fig 1.

Network Architectures of Clinical Data
A fully connected neural network (FCNN) using clinical variables
was separately developed for the classification task as in Table 1.
FCNN consists of a series of fully connected layers of 1024, 512,
128, 64, 32, and 16 nodes with an interposing rectified linear unit
(ReLU) activation and batch normalization layers. A final classifi-
cation layer with a single node was used to perform the binary
classification task of clinical variables.

Synthesis of T2WI and FLAIR
Cortical tubers and subcortical nodules are major brain manifesta-
tions of rare pediatric TSC disease. Improving the conspicuity of
cortical tubers and subcortical nodules is very important for clinical
radiologists to diagnose rare pediatric TSC disease.30 T2WI provides
higher lesion and brain contrast. However, there is a strong CSF sig-
nal in T2WI, which interferes with visualization of periventricular
lesions. FLAIR images can suppress CSF. However, the lesion-brain
contrast in FLAIR is not clear enough. No single sequence can gener-
ate all of the desired tissue-contrast features in 1 image due to the
necessary trade-offs in the choice of MR imaging pulse sequence pa-
rameters. Recent work has shown that combining T2WI and FLAIR
images can enhance the detection of MS lesions.31,32 However, meth-
ods to optimize combining T2WI and FLAIR in rare pediatric TSC
disease have not been reported so far. Therefore, inspired by
Wiggermann et al31 and Gabr et al,32 we propose to use FLAIR3 as a
new synthetic technique to optimally combine T2WI and FLAIR in
rare pediatric TSC disease as in the following equation,32

FLAIR3 ¼ FLAIR1:55 � T2WI1:45:Equation 1

This formula is used to balance the lesion and brain tissue
contrast between T2WI and FLAIR images. Lesion-brain contrast
levels were different in T2WI and FLAIR images, even at the
same TE. Unlike T2WI, FLAIR introduces modest T1-weighting,
which counteracts the effect of prolonged relaxation of T2 in the
lesion, thereby reducing the lesion-to-brain contrast. In addition,
only FLAIR produces CSF-nulled images. Therefore, combining
the 2 images with optimized weights may yield the best lesion-to-
brain contrast in patients with rare pediatric TSC.

Late Fusion Strategies
Recently, several studies33-35 reported that the late fusion model
can most effectively grasp the data distribution and ultimately
yielded the best prediction performances. Inspired from Eweje
et al18and Jonsson et al,20 we developed a late fusion model to
combine multiple sequences of MR imaging for a feature
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extractor. Then, clinical data were fed into an FCNN. The late
fusion model used prediction scores from the T2WI, FLAIR,
FLAIR3, and clinical models as input and output a final classifica-
tion by a simple and effective weighted-average ensemble
(WAE) method as follows,

WAE ¼ W1 � T2WI þ W2 � FLAIR

þW3 � FLAIR3þ W4 � Clinical;Equation 2

where W1 1 W2 1 W3 1 W4 ¼ 1. T2WI, FLAIR, FLAIR3 and
Clinical represent the prediction scores of 3 input images and
clinical data. WAE represents the output prediction scores W1,
W2, W3, and W4 are the weights of the prediction scores of the 4

input. The above multi-technique deep learning method is called
as WAE-net, as shown in Fig 1.

For the pediatric TSC classification tasks with 1 single input
image technique, 3D-ResNet34 architectures were applied. For
the pediatric TSC classification tasks with 1 single-input clinical
datum, FCNN architectures were applied. When WAE-net was
used, 3 sequences of T2WI, FLAIR, FLAIR3 images, and clinical
data were used as input. The late fusion model used prediction
scores from the T2WI, FLAIR, FLAIR3, and the clinical model as
input and output a final classification by a simple and effective
weighted-average method. In our experiments, W1, W2, W3 and
W4, which were the weights of the prediction scores of the 4
inputs, are the same.

Participant Data
In this study, all pediatric patients came from Shenzhen Children’s
Hospital between January 2013 and September 2021, diagnosed
with rare TSC-related epilepsy. Three hundred pediatric patients
with ASM treatment for at least 1 year were enrolled in the retro-
spective study. Written informed consent was obtained from all
subjects before the study, and the protocols and study were
approved by the institutional review board of the Shenzhen
Children’s Hospital. Written informed consent was obtained from
patients with rare TSC and/or their parents. All MR imaging scans
included FLAIR images and T2WI before ASM treatment.

FIG 1. The net schematic of the proposedWAE-net method. A, Schematic of our proposedWAE-net pipeline. The ResNet3D took T2-weighted,
FLAIR, and FLAIR3 images as input and output prediction scores, respectively. A FCNN model accepted age, sex, and TSC symptom variables as
input and output a prediction score. A WAE-net used prediction scores from the T2-weighted, FLAIR, FLAIR3, and clinical models as input and
output a final classification by a simple and effective direct weighted-averaging method. B, Network structure of ResNet3D. FC indicates fully
connected layer; conv3d, 3D convolution.

Table 1: Network structure of FCNN using 1-dimensional clinical
variables
Layer Name Output Dims
Input layer (1,4)

FC1 1024
FC2 512
FC3 128
FC4 64
FC5 32
FC6 16

Output layer 1

Note:—FC indicates fully connected layer; Dims, dimensions.
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Otherwise, drug-treatment outcomes were defined according
to the 1981 International League Against Epilepsy classification,36

which were recorded as a controlled group or an uncontrolled
group. Pediatric patients were considered as the controlled group
if they did not have clinical seizures for at least 1 year. Uncontrolled
pediatric patients (refractory patients) had at least 1 seizure in the
past year. Figure 2 shows the inclusion criteria.

Imaging Data
Binary classification models were trained to distinguish pediatric
uncontrolled seizures from controlled seizures on T2-weighted,
FLAIR, and FLAIR3 images. Five-fold cross-validation was used
to evaluate the models. Using the ResNet3D architecture,37 mod-
els were trained with a learning rate of 0.001, batch size of 4 for
100 epochs, Adam optimization (https://www.researchgate.net/
publication/352497171_Adam_Optimization_Algorithm), and the
loss function of focal loss. The area under the receiver operating
characteristic (ROC) of cross-validation (AUC) as the metric for
model evaluation, while preserving the model, achieved the best level
of AUC during training. After training, we used the parameters of all
5 models, which originated from 5-fold cross-validation, to test. The
prediction score of each pediatric patient was determined by the av-
erage of the prediction scores of the 5 models from 5-fold cross-vali-
dation. Figure 3B shows the training and evaluation scheme.

Pediatric data were randomly split into a training and validation
data set (n¼ 240) and an independent test data set (n¼ 60). We
trained all the models using an NVIDIA RTX A6000 GPU card
(https://www.techpowerup.com/gpu-specs/rtx-a6000.c3686). Training,
validation, and test of models were implemented with Python
(Version 3.8.10) and PyTorch (Version 1.9.0) environments.

T2WI was registered into the FLAIR space using the FMRIB
Linear Image Registration Tool (FLIRT; http://www.fmrib.ox.ac.uk/
fslwiki/FLIRT) of FSL, which used mutual information as the cost
function.38 In neuroimaging studies, most lesions were located in the
brain tissue. Therefore, we first used the deep learning tool HD-bet
(https://bio.tools/HD-BET#!)39 to dissect the skull inMR imaging.

The 3D MR images were resized to 128, 128, 128, and the
image intensity was then normalized to the range between 0 and
1, using Equation 2 as follows,

NormalizdðxÞ ¼ x�MinðxÞ
MaxðxÞ–MinðxÞ ;Equation 3

where Max(x) and Min(x) are the maximum and minimum of the
brain-extracted MR images and Normalized(x) is the normalized
MR images. Finally, T2WI and FLAIR were combined into FLAIR3.
Figure 3A shows the schematic of the data-preprocessing pipeline.

Clinical Data
The FCNNmodel for clinical feature-based classification was also
trained with a learning rate of 0.001, batch size of 4 for 100
epochs, Adam optimization, and the loss function of focal loss.
Five-fold cross-validation was used to evaluate the models. The
clinical features with statistical significance (P, .05) were
selected as the final feature input of the FCNNmodel.

Evaluation Model
Here, AUC, accuracy (ACC), sensitivity (SEN), and specificity (SPE)
were calculated to assess the classification performance for eachmodel
in each cohort. These metrics are defined in terms of true-positive
(TP), which is the total number of positive classifications that are cor-
rect; true-negative (TN), which is the total number of negative classifi-
cations that are correct; false-positive (FP), which is the total number
of positive classifications that are incorrect, and false-negative (FN)
which is the total number of negative classifications that are incorrect.
ACC, SEN, and SPE are calculated by using the following equations:

ACC: The percentage of the whole sample that is correctly
classified.

ACC ¼ TPþ TN
TPþ TN þ FPþ FN

:Equation 4

SEN: The percentage of the total sample that is true that is
correctly classified.

SEN ¼ TP
TPþ FN

:Equation 5

SPE: The percentage of the total sample that is negative and
correctly classified.

SPE ¼ TN
TN þ FP

:Equation 6

Statistical Analysis
Here, we used frequencies and percentages for categoric variables
and mean (SD) for continuous variables. To compare pairs of
groups, we used F-tests for continuous variables and x 2 tests for
categoric variables. P, .05 was defined as significant. All statistical

FIG 2. Study inclusion criteria. Flow chart details the identification of
the study cohort. ILAE indicates International League Against Epilepsy.
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analyses were performed using scikit-
learn (https://scikit-learn.org/stable/index.
html), scipy (https://scipy.org/), and
stats (https://pypi.org/project/statsmodels/)
models in Python 3.8.10.

RESULTS
Patient Characteristics
The main patient characteristics of all
300 patients with rare pediatric TSC-
related disease are listed in Table 2. Of

FIG 3. The applied operations of preprocessing pipeline, training, and evaluation. Schematic of the data preprocessing pipeline (A) and training
and evaluation scheme (B). Five models were trained for each technique and used to predict drug-treatment outcome individually. The 5 predic-
tions were averaged to give the final prediction of the model performances.

Table 2: The clinical characteristics of pediatric patients with rare TSCa

Characteristics Controlled (n= 97) Uncontrolled (n= 203) P Value
Male (No.) (%) 56 (57.7%) 107 (52.7%) .416
Age at onset (mean) (months) 30.44 (SD, 33.17) 17.35 (SD, 26.22) ,.001b

Age at imaging (mean) (months) 57.01 (SD, 45.18) 36.27 (SD, 40.37) ,.001b

Infantile spasms (No.) (%) 21 (21.6%) 93 (45.8%) ,.001b

Epilepsy (No.) (%) 97 (100.0%) 203 (100.0%)
ASM numbers ($3), n (%) 42 (43.3%) 171 (84.2%) ,.001b

Focal epilepsy (No.) (%) 75 (77.3%) 16 5 (81.3%) .424

Note:—Controlled indicates controlled seizures; Uncontrolled, uncontrolled seizures.
a P values of continuous variables are the results of F-tests, and P values of categoric variables are the results
of x 2 tests.
b The statistical significance between the groups.
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the 300 enrolled patients, 97 (41.1%) were controlled and 203
(58.9%) were uncontrolled by drug treatment. Thirty-one (41.3%)
and 8 (40.0%) patients had controlled seizures, while 44 (58.7%) and
12 (60.0%) patients had uncontrolled seizures in the training and
test cohorts, respectively. Of the 300 patients with TSC, 56 (57.7%)
were male in the controlled seizures group and 107 (52.7%) were
male in the uncontrolled group. The ages at onset in children with
rare TSC were 30.44 (SD, 33.17)months and 17.35 (SD, 26.22)
months in the controlled and uncontrolled groups, respectively.
The ages at imaging of the children with TSC were 57.01 (SD,
45.18) months and 36.27 (SD, 40.37)months in the controlled and
uncontrolled groups, respectively. There were no significant differ-
ences between the 2 drug-treatment outcomes based on sex and
focal epilepsy features (P. .05). Age of onset, age at imaging, in-
fantile spasms, and ASM numbers were significantly different
between the 2 drug-treatment outcomes (P, .05).

Boxplots for age of onset and age at imaging and stacked bar-
plots for infantile spasms and ASM numbers are shown in Fig 4.
From the figure, we can see that the number of patients with

infantile spasms in the uncontrolled group was much larger than
that in the controlled group. The number of pediatric patients
with ASM numbers of 3 in the uncontrolled group was much
higher than that in the controlled group.

Synthetic FLAIR3
Figure 5 shows FLAIR, T2WI, and synthetic FLAIR3 images in a
representative child with rare TSC in the controlled group and a
child with rare TSC in the uncontrolled group and a healthy
child. Note the improved lesion contrast and visibility of the
lesions on the synthetic FLAIR3 images of the child with rare
TSC. The TSC lesion is shown by the white arrow.

Model Performance
The performance results compared with other networks on FLAIR
is shown in Table 3. When the network inputs are FLAIR,
ResNet3D achieved the best AUC performance. Performance of
the final T2-weighted, FLAIR, FLAIR3, clinical data, and proposed
WAE-net models on the test set are described in Table 4 and Fig 6.

FIG 4. Statistical analysis of the clinical data set. A and B, Boxplots for continuous variables. A, Age at onset. B, Age at imaging. The horizontal axis
represents groups, and the vertical axis represents features. Themiddle line of the boxplot is the median of the feature data. The upper and lower
bounds of the boxplot are the upper and lower quartiles of the feature data, respectively. P values are the results of the Spearman correlation
test. C and D, Stacked barplots for categoric variables. C, Infantile spasms. D, ASM numbers ($3). The horizontal axis represents features (1.0 repre-
sents ASM numbers [$3] or infantile spasms; 0.0 represents ASM numbers [,3] or no infantile spasms), and the vertical axis represents the number
of patients in the 2 groups. P values of continuous variables are the results of F-tests, and P values of categoric variables are the results of x 2 tests.

1378 Wang Dec 2023 www.ajnr.org



The clinical pediatric data-based model results were trained using
age of onset, age at imaging, infantile spasms, and ASM numbers
with an AUC of 0.774, ACC of 0.831, SEN of 0.950, and SPE of
0.579 in the testing cohort. The AUC performance of FLAIR3 was
better than that of T2WI using the same network. When both
FLAIR3 and clinical data are fed into the network, the network
achieves an AUC performance of 0.887, which is higher than the
AUC performance of T2-weighted data plus clinical data and
FLAIR data plus clinical pediatric data. When T2-weighted
(T2W), FLAIR, FLAIR3, and clinical pediatric data are all ensem-
ble to input into the proposed network (‘Ensemble all’ in Table 4
and Fig 6), the best classification results were obtained for the pro-
posed WAE-net model with an AUC of 0.908, ACC of 0.847, SEN

of 0.850, and SPE of 0.842 in the testing cohort. Figure 7A, -B
shows the ROC curve for T2-weighted, FLAIR, FLAIR3, clinical
pediatric data, and the performance of the proposed WAE-net
models on the test set. Figure 7C, -D shows the decision curve
analysis (DCA) for T2-weighted, FLAIR, FLAIR3, clinical pediatric
data, and the performance of the proposed WAE-net models on
the test set.

DISCUSSION
Reliable prediction of epilepsy drug-treatment outcomes allows
more targeted treatment and can improve cure rates and may
protect neurodevelopment.4,8,40 However, it is difficult for clini-
cians to determine epilepsy drug-treatment outcomes on the basis
of clinical and treatment presentation. Therefore, there is an
urgent need to develop a pediatric model that can predict epilepsy
drug-treatment outcomes before treatment initiation.

Therefore, for the first time, we have developed a deep learn-
ing model to predict the drug-treatment outcome and have first
introduced FLAIR3 as a new technique into the rare pediatric
TSC diagnosis to improve lesion contrast. Our approach uses a
deep neural network framework to extract descriptive factors
from multicontrast MR images and clinical pediatric data. The
proposed WAE-net model achieved the best AUC performance
of 0.908 in the testing cohort when T2-weighted, FLAIR,
FLAIR3, and clinical data are all input to the network. The struc-
tural MR images were complemented by demographic infor-
mation (age at onset and age at imaging) and infantile spasms
and ASM numbers collected at the baseline visit to compute a
combined score used to predict epilepsy drug-treatment outcome.
Compared with the single technique with ResNet3D approaches,
the proposed WAE-net can improve the pediatric classification
performance, meaning that combining multiple-contrast MR
imaging and clinical pediatric data can use the complementary
information between the two.20,21 Moreover, ResNet, with
extremely high accuracies in the ImageNet data set (https://
image-net.org/) has rapidly become a good choice for image-
recognition tasks.26 However, to the best of our knowledge,
this article is the first to consider the ResNet3D of CNN archi-
tectures for diagnosis in rare pediatric TSC disease.

We specifically selected these structural MR imaging and clin-
ical pediatric data to create a classification method that used the
least invasive, lowest cost, and more commonly used diagnostic
tools in clinical applications. In other words, the MR imaging and
clinical pediatric data that we included here can typically be col-
lected in nontertiary or highly specialized medical centers, greatly
increasing the potential applicability of our method in clinical pe-
diatric practice. For example, we did not use PET and fMRI as
biomarkers because these imaging data are more expensive and
less diffuse than the MR imaging and clinical pediatric data used
here. In addition, a significant advantage of MR imaging over
other imaging modalities such as CT and nuclear imaging is that
it clearly shows soft tissues in multicontrasts.41

In addition, we found that FLAIR3 could improve lesion con-
trast and visibility of the lesions and that the AUC performance of
FLAIR3 is better than that of T2WI by using the same neural net-
work. In addition, the AUC performance of FLAIR3 data plus
clinical data is higher than the AUC performance of T2-weighted

FIG 5. Representative images from a child with TSC in the controlled
group, a child with TSC in the uncontrolled group, and a healthy child
shown on T2WI, FLAIR, and the proposed synthetic FLAIR3 (TSC
lesion, white arrow). Controlled group (A) uncontrolled group (B), and
healthy child group (C).

Table 3: Performance results compared with other networks on
FLAIR
Technique Model AUC ACC SEN SPE
FLAIR ResNet3D 0.783 0.695 0.650 0.790
FLAIR LeNet3D 0.660 0.644 0.600 0.737
FLAIR VGG3D 0.765 0.746 0.825 0.579

Note:—ResNet3D is derived from He et al;26 LeNet3D is derived from Simonyan;46

VGG3D is derived from Szegedy et al.47

Table 4: The results of testing set
Technique Model AUC ACC SEN SPE

FLAIR ResNet3D 0.783 0.695 0.650 0.790
T2WI ResNet3D 0.649 0.593 0.450 0.895
FLAIR3 ResNet3D 0.730 0.695 0.700 0.684
Clinical data FCNN 0.774 0.831 0.950 0.579
FLAIR1 clinical data WAE-net 0.826 0.847 0.974 0.580
FLAIR31 clinical data WAE-net 0.887 0.831 0.850 0.789
T2WI1 clinical data WAE-net 0.809 0.847 0.975 0.579
Ensemble all WAE-net 0.908 0.847 0.850 0.842
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data plus clinical pediatric data and FLAIR data plus clinical pedi-
atric data. One possible explanation is that FLAIR3 can improve
the lesion-to-brain contrast and provide more low-dimensional
visual lesion information for a rare pediatric TSC diagnosis, which
may increase the interpretability of deep learning and support the
idea that deep learning methods can identify the more relevant
features from the input images.42 Previous studies43-45 have identi-
fied several risk factors affecting epilepsy prognosis in pediatric
patients with TSC, including the age of onset of seizures, the pres-
ence of infantile spasm, and a history of using .3 antiepileptic
drugs. In our study, we also observed the impact of age at onset
and age at imaging on the prognosis of epilepsy. Specifically, we
found that these factors were statistically different between the
controlled and uncontrolled groups (P, .05), with the uncon-
trolled group being younger. Our findings suggest that pediatric
patients with a younger age of onset and imaging are more likely
to have a poorer prognoses. Pediatric patients with focal seizures
before 1 year of age are more likely to develop resistance than
patients with onset after 1 year of age.3 Jeong et l45 also reported
that pediatric patients with rare TSC epilepsy with previous infan-
tile spasms are more likely to have drug resistance,3 which is con-
sistent with our conclusion that the uncontrolled group has a
higher proportion of infantile spasms.

In our study, we included pediatric patients with confirmed
rare TSC-related epilepsy in Shenzhen Children's Hospital for
8 years, followed the patients for.1 year, and finally included 300
children with rare TSC-related epilepsy. During the experiments,
we found that the proposed 3D CNN models can achieve better
performance than the traditional machine learning approach
from Yang et al.12 They achieved an AUC of 0.812 with multilayer
perceptron.12 However, this study also had small sample sizes. We

did not find any studies involving deep learning techniques for
the prediction of epilepsy drug-treatment outcome on MR imag-
ing. Intuitively, neural network–based methods should perform
better than conventional approaches for feature-extraction fol-
lowed by a separate classifier, because the feature-selection process
is directly driven by the performance-optimization procedures.16

Deep learning is required for a number of training samples to
achieve good generalization performance. We believe the per-
formance improvement of our method is primarily caused by fully
using the spatial features of 3D MR imaging and complementary
information of clinical pediatric data. The increase in the number
of pediatric data sets may also be 1 reason.

The rarity of TSC presents a challenge in compiling a data set
that could effectively power the training of a deep neural network
for this task. Although the size of our data set is larger than that
of many other data sets used for rare disease classification tasks, it
is still orders of magnitude smaller than data sets used for other
medical image characterization tasks. Larger data sets could also
allow granular classification beyond binary, such as distinguish-
ing infantile spasms or other histopathologic diagnoses.

Several limitations should be noted for the current pediatric
study. First, we conducted this study in a retrospective manner
without external validation, having the risk of bias and lack of gen-
eralizability. Second, the study participants belonged to a single
ethnicity (Chinese), implying that our results might not be applica-
ble to pediatric patients from other ethnic backgrounds. Collecting
multicenter data sets is challenging due to the extremely low inci-
dence of rare pediatric TSC disease and the need to follow pediatric
patients with rare TSC for$1 year. Future prospective studies that
incorporate data from other international centers and larger data
samples can overcome this limitation.

FIG 6. The performances of the final T2-weighted, FLAIR, FLAIR3, clinical pediatric data, and the proposedWAE-net models on the test set.
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In short, for the first time, we introduce FLAIR3 as a new
technique in the rare pediatric TSC diagnosis to improve lesion
contrast, and we have developed a deep learning model that can
predict epilepsy drug-treatment outcomes with high AUC and
accuracy. At present, this work demonstrates the promise of deep
learning to aid radiologists in characterizing the refractory
patients with improved certainty. FLAIR3 can provide clinicians
with a new technique to accurately localize lesions in patients
with rare pediatric TSC.

CONCLUSIONS
In general, age of onset, age at imaging, infantile spasms, and
ASM numbers were shown to be related to epilepsy drug-treat-
ment outcome in children with rare TSC. FLAIR3 can improve
lesion contrast and visibility and provide more complementary
information for our deep learning models to improve the predic-
tion accuracy. The experiments have shown that the proposed
deep learning method could successfully predict epilepsy drug-
treatment outcomes in children with rare TSC-related disease.

FIG 7. Analysis of the single technique and the proposed WAE-net methods. A, ROC curves in FLAIR, T2-weighted, FLAIR3, and the clini-
cal model of the testing cohort. B, ROC curves in the proposed WAE-net of the testing cohort. C, DCA for FLAIR decision. T2-weighted,
FLAIR3, and the clinical model of the testing cohort. D, DCA for the proposed WAE-net of the testing cohort. The black line represents
the assumption that all patients have interventions. The black dotted line represents the assumption that no patients have interven-
tions. The colored lines represent the different models. The horizontal axis represents the threshold probability, and the vertical axis
represents the net benefit.
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The current test results have suggested that the proposed method
could be a noninvasive, efficient, and reliable way to predict pedi-
atric TSC-related drug-treatment outcomes and could be as a
strong baseline for future pediatric researchers.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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