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ORIGINAL RESEARCH
ADULT BRAIN

Topological Structural Brain Connectivity Alterations in
Aspartylglucosaminuria: A Case-Control Study

U. Roine, A.M. Tokola, T. Autti, and T. Roine

ABSTRACT

BACKGROUND AND PURPOSE: We investigated global and local properties of the structural brain connectivity networks in aspar-
tylglucosaminuria, an autosomal recessive and progressive neurodegenerative lysosomal storage disease. Brain connectivity in aspar-
tylglucosaminuria has not been investigated before, but previous structural MR imaging studies have shown brain atrophy, delayed
myelination, and decreased thalamic and increased periventricular WM T2 signal intensity.

MATERIALS AND METHODS: We acquired diffusion MR imaging and T1-weighted data from 12 patients with aspartylglucosaminuria
(mean age, 23 [SD, 8] years; 5 men), and 30 healthy controls (mean age, 25 [SD, 10] years; 13 men). We performed whole-brain con-
strained spherical deconvolution tractography, which enables the reconstruction of neural tracts through regions with complex
fiber configurations, and used graph-theoretical analysis to investigate the structural brain connectivity networks.

RESULTS: The integration of the networks was decreased, as demonstrated by a decreased normalized global efficiency and an
increased normalized characteristic path length. In addition, the average strength of the networks was decreased. In the local analy-
ses, we found decreased strength in 11 nodes, including, for example, the right thalamus, right putamen, and, bilaterally, several occi-
pital and temporal regions.

CONCLUSIONS: We found global and local structural connectivity alterations in aspartylglucosaminuria. Biomarkers related to the
treatment efficacy are needed, and brain network properties may provide the means for long term follow-up.

ABBREVIATION: AGU ¼ aspartylglucosaminuria

Aspartylglucosaminuria (AGU) is a rare, progressive, neuro-
degenerative lysosomal storage disease. It is inherited in a

recessive manner and is caused by a mutation in the aspartylglu-
cosaminidase (AGA) gene located in 4q34.3.1 Due to the isolated
population, it has developed in Finland, where the estimated
incidence of AGU is 1:18,000 and there are about 160–200

patients with AGU in the country.2 It has been estimated that
200–300 patients with AGU exist worldwide.2 More than 30
AGA variants have been identified in patients with AGU, but in
Finland, 98% of patients have the AGUFIN major variant.3 The
mutations in the AGA gene result in deficient activity of a lyso-
somal hydrolase enzyme called aspartylglucosaminidase, which
is responsible for breaking a N-glycosidic bond between carbo-
hydrates and proteins, and this leads to excessive accumulation
of uncleaved aspartylglucosamine and other glycoasparagines in
tissues.1,2 With time, AGU affects the whole body, including the
CNS, in a progressive manner.

The first neurologic signs are often developmental delays,
such as clumsy walking and delayed speech, noticed around 12–
15months of age, and progressive intellectual impairment
finally leads to severe intellectual disability.4 Autistic features,
behavioral disturbances, epilepsy, and disrupted sleep patterns
may be present.4 Motor skills also deteriorate with time, and
skeletal and connective tissue abnormalities may be present.4

Typical facial features include macroglossia, thick lips, low and
wide nasal bridge, short nose, puffy eyelids, and broad face.4

After early macrocephaly, the head size reduces, though the
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skull may be thickened.5 The disease leads to a premature death,
typically before 45 years of age.6

The AGU diagnosis is made on the basis of genetic testing,
though biochemical tests of accumulated aspartylglucosamine in
urine can be useful for screening purposes.4 No curative thera-
pies currently exist, but several preclinical studies aiming at
enzyme replacement or gene therapy have been published,7-10

and in 2018, a 4-year clinical trial was initiated with a pharmaco-
logic chaperone called betaine.11 It facilitates the correct folding
of aspartylglucosaminidase mutants, because most AGA variants
cause misfolding of the protein.4 The benefit of hematopoietic
stem cell transplantation is unclear.4

With the emerging new treatments, new methods to evaluate
the response are needed. Biochemical tests, such as aspartylglu-
cosaminidase enzyme activity, could potentially be used as sur-
rogate biomarkers.4 MR imaging–based measures, including
structural brain connectivity, could provide a means for evaluat-
ing the progression of the disease.

Conventional MR imaging studies in AGU have shown brain
atrophy, delayed myelination, decreased thalamic T2 signal inten-
sity, and increased T2 signal intensity in the periventricular
WM.12-16 In addition, on the basis of a visual analysis, poor dif-
ferentiation between white and gray matter, thinning of the cor-
pus callosum, cerebellar atrophy, and mild ventricular dilation
have been reported.14 Representative figures of the abnormalities
in conventional MR imaging have been published by Tokola et
al.14 Diffusion MR imaging has been used to study a 10-year-old
boy with AGU, and decreased fractional anisotropy was found in
the corpus callosum and thalamocortical pulvinar tracts com-
pared with his healthy twin brother.17

Possible alterations in structural brain connectivity have not
been investigated in AGU. Diffusion MR imaging followed by
whole-brain tractography and graph-theoretical methods can be
used to reliably study the whole-brain connectivity in health and
disease.18-21 The association of structural brain connectivity with
the response to medication has also been studied, for example, in
bipolar disorder and schizophrenia.22,23 The aim of the current
study was to recognize possible global or local abnormalities in
the structural brain connectivity networks in patients with AGU
compared with healthy controls. On the basis of the findings in
another lysosomal storage disease,24 juvenile neuronal ceroid lip-
ofuscinosis, we expected to find globally decreased integration of
the structural brain connectivity networks in AGU. In addition,
we expected to find several local alterations in the connectivity
based on the wide spectrum of the symptoms.

MATERIALS AND METHODS
In summary, we performed whole-brain tractography on the ba-
sis of diffusion MR imaging data to reconstruct the WM tracts in
the brain and segmented the GM of the brain into 164 anatomic
regions. Then, we reconstructed structural brain connectivity net-
works by assigning each end of the reconstructed fiber tracts to
corresponding segmented anatomic regions and used graph-the-
oretical methods to investigate the global and local properties in
the structural brain connectivity networks of patients with AGU
and healthy controls.

Participants
Twelve patients with AGU, mean age, 23 years 11months (SD,
8 years 3months) (range, 9–35 years; 5 males) and 30 healthy
age- and sex-matched controls, mean age, 25 years 5months (SD,
9 years 11months) (range, 9–46 years; 13 males), participated in
this study. Due to the rarity of the disease, we were not able to
recruit more patients. Two-way t tests with a significance threshold
a , .05 were used to determine sufficient age- and sex-matching
of the two groups. All patients were diagnosed using a urine test
showing elevated levels of apartylglucosamine and a blood test
showing deficiency in the AGA enzyme. The control subjects were
healthy volunteers recruited from the Helsinki and Uusimaa
region who had no neurologic, psychiatric, or other major diagno-
ses or medications. All participants and/or their parents gave
informed consent before the study, which was approved by the
local ethics committee of the Hospital District of Helsinki and
Uusimaa (ethics permission, 247/E7/2007).

MR Imaging Acquisition
The MR imaging data were acquired with an Achieva 3T machine
(Phillips Healthcare) at the Helsinki University Hospital, Finland,
from 2007 to 2012. Sedation was not used during the scanning
due to ethical reasons. T1 3D axial series were acquired with
1 �1 � 1mm resolution (TR ¼ 68.15ms, TE ¼ 3.75ms, matrix
size ¼ 256� 256mm, flip angle ¼ 8°). Two radiologists visually
evaluated the conventional sequences, and the findings have been
reported previously.14 For the single-shot axial diffusion-weighted
data, 32 gradient orientations, a diffusion-weighting¼ 1000 s/mm2,
TR¼ 10,809ms, TE¼ 59.5ms, FOV¼ 224� 224mm, and an iso-
tropic 2-mm voxel size was used. One image was acquired with no
diffusion-weighting.

Reconstruction of the Structural Brain Connectivity
Networks
First, the data were corrected for motion-25 and eddy current–
induced distortions in ExploreDTI (https://www.exploredti.com/).26

Because no reverse phase-encoding data were available, echo-planar
imaging distortions were corrected via nonlinear registration with
cubic b-splines to the T1-weighted data.27 Then, we performed con-
strained spherical deconvolution based whole-brain streamline trac-
tography, which enables the reconstruction of neural tracts through
regions with complex WM configurations, such as crossing
fibers.28,29 Next, we segmented 164 cortical and subcortical GM
areas from the T1-weighted images using FreeSurfer (http://surfer.
nmr.mgh.harvard.edu).30,31 The validity of the segmentations was
visually confirmed for all subjects. Finally, we reconstructed struc-
tural brain connectivity networks, connectomes, by assigning the
reconstructed streamline tracts to the GM areas on the basis of their
end points.18,19 These GM areas became the nodes of the network,
and the edges between the nodes were weighted by the number of
the reconstructed tracts between each pair of areas, resulting in a
164� 164 connectivity matrix. The reconstruction of structural
brain connectivity networks is presented in Fig 1.

Graph-Theoretical Analyses
Graph-theoretical analyses were performed with the Brain
Connectivity Toolbox in Matlab (MathWorks).32 We investigated
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7 global (betweenness centrality, normalized clustering coefficient,
normalized global efficiency, normalized characteristic path
length, small-worldness, degree, and strength) and 3 local (betwe-
enness centrality, efficiency, and strength) properties of the struc-
tural connectome.19 These properties were compared between the
patients with AGU and the control subjects. In addition, the cor-
relations of the global properties with age were also investigated
both in patients with AGU and controls.

Statistical Analyses
Statistical analyses were performed in SPSS Statistics, Version 27
(IBM). Age and sex were used as covariates in all analyses except
for the correlation analyses between the global network properties
and age. There were no missing data. The Bonferroni correction
was used to correct for the family-wise error rate using n ¼ 7 for
the global analyses and n ¼ 164 for the local node-level analyses.
Due to the small sample size, the assumptions of normality and ho-
mogeneity of variances for the F tests were rigorously checked for
each variable, and whenever the assumptions were not met, a non-
parametric Mann-Whitney U test (2-sided, corrected for ties) was
used instead.33 However, because the covariates cannot be taken
into account in the nonparametric test, we chose to report only the
findings that were significant using both approaches.

Scientific Visualizations
BrainNet Viewer (https://www.nitrc.org/projects/bnv/),34 MRtrix3
(https://www.mrtrix.org/),35 seaborn (https://seaborn.pydata.org/),36

and Matplotlib (https://matplotlib.org/)37 were used to produce the
scientific visualizations.

RESULTS
We investigated both global and local properties of the structural
connectome in patients with AGU compared with control subjects.
Of the global properties, small-worldness (F ¼ 11.6, P ¼ .0006),

strength (F ¼ 15.9, P ¼ .0003), degree
(F ¼ 8.4, P ¼ .006), and normalized
global efficiency (F ¼ 15.5, P ¼ .0003)
were significantly decreased, and char-
acteristic path length was significantly
increased (F ¼ 35.9, P ¼ .0000006) in
AGU after Bonferroni correction for
multiple comparisons, as demonstrated
in Fig 2. The results, except for node
degree, also remained significant with-
out using age and sex as covariates.
However, when taking into account the
assumptions of the F tests, normality
and homoscedasticity, the differences
in small-worldness and degree were not
statistically significant in the nonpara-
metric Mann-Whitney U tests.

We also investigated the correlation
between the global properties and age
in both the patients and controls. As
shown in Fig 3, the normalized cluster-
ing coefficient and average strength
decreased with age in both patients with

AGU and control subjects while being lower at all ages in AGU.
Moreover, in characteristic path length, global efficiency, small-
worldness, and degree, the differences between the 2 groups were
smaller in the younger subjects and increased with age.

In the local node-level analyses, we found decreased strength
in 12 nodes using F tests and age and sex as covariates. In 11 of
these nodes, the strength was also significantly decreased using
a nonparametric Mann-Whitney U test performed without
using age and sex as covariates whenever the assumptions of the
F test were not met. These regions included the right thalamus,
right putamen, and several nodes in the occipital and temporal
regions in both hemispheres, shown in Fig 4 and the Online
Supplemental Data. Local efficiency or betweenness centrality
were not affected. The results were corrected for multiple com-
parisons using a Bonferroni-corrected significance threshold of
P, .05/164 ¼ .0003. The complete node-level results are pre-
sented in the Online Supplemental Data.

DISCUSSION
The purpose of our study was to investigate whether there are
global or local abnormalities in the structural brain connectivity
networks in patients with AGU. First, we performed whole-brain
tractography to reconstruct the WM tracts in the brain, then we
segmented the GM into 164 anatomic areas, and finally, we
reconstructed structural brain networks, which we analyzed by
using graph-theoretical tools. We found both global and local
topological alterations in the brain connectivity in patients with
AGU compared with the control group. In addition, we observed
an altered age relationship in patients with AGU.

To investigate the integration of the networks, we calculated
normalized global efficiency38 and normalized characteristic path
length,39 which both showed decreased integration in patients
with AGU. Characteristic path length is primarily affected by lon-
ger paths; global efficiency, by shorter paths. Thus, our results

FIG 1. Reconstruction of structural brain connectivity networks. A, Cortical and subcortical GM
was parcellated into 164 regions based on the T1-weighted images. B, Constrained spherical
deconvolution was used to estimate complex fiber orientation distributions from diffusion MR
imaging data. C, Whole-brain probabilistic streamline tractography was performed to reconstruct
(D) structural brain connectivity networks, in which nodes represent GM regions and the edges
between the nodes represent the WM connectivity (number of streamlines) between the
regions. The size of the nodes corresponds to the strength of the node, and the opacity of the
edges is scaled according to the number of streamlines. The fiber orientation distributions and
whole-brain tractography are colored according to the directions in the brain: red (left-right),
blue (superior-inferior), and green (anterior-posterior).
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suggest that alterations in both shorter and longer paths are pres-
ent in patients with AGU compared with control subjects.

We investigated the segregation of the brain networks using
the normalized clustering coefficient,40 which measures the frac-
tion of triangles formed by neighboring nodes compared with all
possible triangles between them. However, no differences were
found in the normalized clustering coefficient between patients
with AGU and control subjects. Finally, the average strength was
decreased in the brain networks of patients with AGU, suggesting
overall decreased global connectivity in AGU.

The development and organization of brain circuitry require
coordination of a complex set of neurodevelopmental events,
which may be disturbed in AGU. We know that myelination is
delayed and deficient in AGU, the volume of WM is decreased
in school-aged children even in visual evaluation, and general
atrophy is slowly progressive during the following years.15,41,42

Vacuolation of neurons and neuronal loss have been reported in
neuropathologic studies among patients with AGU with
advanced disease.15 The delayed and deficient myelination and
neuronal loss may disturb synaptogenesis as well as pruning,
resulting in impaired integration of networks. Furthermore,

accumulation of iron in the thalamic nuclei in AGU, which has
been shown with susceptibility-weighted imaging in school-
aged patients,43,44 may disturb the connectivity of various tha-
lamic circuits. The relationship between iron concentration and
structural connectivity has not been thoroughly investigated,
but in one study, significant correlations between the iron levels
of the subthalamic nuclei and the number of WM tracts termi-
nating in different GM areas were shown in patients with
Parkinson disease.45 In another study, higher cortical iron con-
centration was associated with lower (task-based) functional
connectivity within a frontoparietal working memory network
and with poorer working memory performance.46

In the local analyses, we found decreased strength in 12 GM
areas, of which 11 were also significant when a nonparametric
Mann-Whitney U test was used whenever the assumptions of the
F tests were not met. These included the right thalamus and puta-
men, which have previously been shown to have a decreased T2-
weighted signal intensity in AGU.14 In addition, the strengths of
the left thalamus (P ¼ .003) and left putamen (P ¼ .002) were
decreased but did not endure correction for multiple compari-
sons (Online Supplemental Data). We also found decreased

FIG 2. Global graph theoretical properties of the structural brain connectivity networks in patients with AGU and control subjects. The violin
plots show the full distribution of the data via kernel density plots.
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strength bilaterally in the middle temporal gyri, responsible for
recognition of known faces and accessing word meaning while
reading,47 and in the left planum temporale, a highly lateralized
structure overlapping with the Wernicke area and involved in
early auditory processing including language and music.48-50 Its
symmetric development has been related to dyslexia51 and stut-
tering.52 The decrease in the strength of the left planum tempo-
rale found in this study may indicate increased symmetry in
AGU.

We have also recently investigated the WM abnormalities in
another lysosomal storage disease, juvenile neuronal ceroid lipo-
fuscinosis (lysosomal/endosomal transmembrane protein, batte-
nin [CLN3]). In the microstructural analyses, we found globally
decreased anisotropy and increased diffusivity in patients with
CLN3 compared with controls.53 Locally, we found decreased
anisotropy and increased diffusivity in the corona radiata and
posterior thalamic radiation. We also found significant global
and local network alterations that correlated with the disease
severity in CLN3, including significantly decreased integration
and degree of the structural brain networks.24 Consistent find-
ings in these lysosomal storage diseases may indicate that inte-
gration of the structural brain networks is decreased in
lysosomal storage diseases in general. Moreover, the local

network properties of the left planum temporale were affected
in both AGU and CLN3.

Limitations of this study include the small sample size and
suboptimal acquisition parameters (low b-value and number of
gradient orientations).54 However, AGU is a rare disease, and
larger sample sizes are difficult to collect. Unfortunately, we do
not have sufficient clinical data for these patients available;
therefore, although it would have increased the clinical impor-
tance of our findings, we could not perform any correlation
analyses between the brain connectivity metrics and clinical var-
iables. Although we carefully verified the success of the segmen-
tations for each subject, we did not account for conventional
MR imaging findings or WM hyperintensities in the statistical
analyses.

In the future, we would recommend using higher diffusion-
weighting with multiple b-values to be able to investigate more
specific properties of the WM tracts such as fiber density.55

Furthermore, the relationship among the properties of the struc-
tural brain connectivity networks, iron accumulation, and clinical
variables such as disease severity should be investigated. Finally,
biomarkers for treatment efficacy are needed, and structural con-
nectivity network analysis may provide means for long-term fol-
low-up.

FIG 3. Correlation of the global network properties with age in patients with AGU and control subjects. The shaded area shows the 95% confi-
dence interval for the regression lines.
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CONCLUSIONS
We investigated the graph-theoretical properties of the structural
brain connectivity networks in AGU and found highly significant
global topological alterations such as decreased integration of the
networks in AGU. In addition, we found decreased strength in 11
regions, including the right thalamus and putamen, previously
also found to be affected in conventional MR imaging studies of
AGU. Our results may also be helpful in planning studies con-
cerning other neurodegenerative diseases.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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