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ABSTRACT

BACKGROUND AND PURPOSE: Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the
thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifes-
tations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mecha-
nisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multi-
modal neuroradiologic features to postmortem pathology.

MATERIALS AND METHODS: Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion
imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion
metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions.
Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient.

RESULTS: All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the
cerebellar white matter and brain stem in 4. White matter, N-acetylaspartate, creatine, and choline concentrations were significantly reduced
compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe
fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and
endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed.

CONCLUSIONS: Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal
encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier
dysfunction, leading to increased water content in the white matter. Periependymal cytochrome C oxidase deficiency could explain
prominent periventricular impairment.

ABBREVIATIONS: AD � axial diffusivity; BW � brain water; FA � fractional anisotropy; MNGIE � mitochondrial neurogastrointestinal encephalopathy; mtDNA �
mitochondrial DNA replication; MD � mean diffusivity; PLIC � posterior limbs of the internal capsule; PO-WM � parieto-occipital white matter; RD � radial diffusivity

Mitochondrial neurogastrointestinal encephalopathy (MNGIE)

is a rare autosomal recessive disorder due to mutations in the

TYMP1 gene that result in thymidine phosphorylase deficiency. This

causes toxic systemic elevation of thymidine and deoxyuridine levels,

deoxynucleotide pool imbalance, and secondary mitochondrial

DNA replication (mtDNA) abnormalities.2-5

Disease onset, typically in young adulthood, is characterized

by a slowly progressive multisystemic involvement, which in-

cludes ptosis, chronic progressive external ophthalmoplegia with

mitochondrial myopathy, demyelinating neuropathy, hearing
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loss, and, most important, severe gastrointestinal dysmotility,

leading to cachexia and diverticulosis of the small bowel.3,6

Severe mtDNA depletion is the most striking molecular defect

affecting several tissues (ie, smooth muscle of the gastrointestinal

wall and vasculature [small vessels]), suggesting that microvascu-

lar dysfunction may play a role in the pathogenesis.7,8 Although

the skeletal muscle does not express thymidine phosphorylase, the

toxic nucleoside accumulation results in a typical mitochondrial

myopathy due to both depletion and accumulation of multiple

deletions of mtDNA.2 Central nervous system involvement in

MNGIE remains undercharacterized and puzzling. The brain

neuroradiologic hallmark is leukoencephalopathy, with bilateral

and symmetrically severe MR imaging signal alterations involving

mostly cerebral hemispheric white matter.9,10 Remarkably, de-

spite the extensive MR imaging alterations, most patients with

MNGIE remain asymptomatic6; brain proton MR spectroscopy

(1H-MR spectroscopy) studies of patients with MNGIE have

shown white matter biochemical alterations suggesting either

neuronal loss/dysfunction11,12 or a normal metabolic profile.13

Furthermore, a previous study reported increased water diffusiv-

ity, evaluated by diffusion-weighted MR imaging, in 4 patients

with MNGIE.12 The neuropathologic study of 2 patients with ge-

netically confirmed MNGIE did not show neuronal loss, demyeli-

nation, or glial proliferation, despite a striking loss of thymidine

phosphorylase expression in capillaries of the white matter and an

increased intracellular albumin staining, consistent with altered

blood-brain barrier permeability.14

The purpose of this study was to elucidate the mechanisms

underlying brain leukoencephalopathy in patients with MNGIE

using a multimodal neuroradiologic and pathologic approach.

MATERIALS AND METHODS
Patients
Seven unrelated patients with a molecular diagnosis of MNGIE (3

men; age range, 23–38 years) were included in this study.

Patients were scanned on a 1.5T MR imaging system (Signa

Horizon LX; GE Healthcare, Milwaukee, Wisconsin). Quantitative

MR imaging parameters were compared with those obtained from 9

healthy volunteers (4 men; age range, 20–35 years) who underwent

white matter 1H-MR spectroscopy and from 14 healthy volunteers (7

men; age range, 21–43 years) who underwent diffusion tensor imag-

ing. Patients were clinically assessed by neurologic, gastroenterologic,

and nutritional evaluations. Four patients died, and in 1 patient (case

7), a postmortem examination was performed.

The Ethics Committee of S.Orsola-Malpighi Hospital ap-

proved the study, and written informed consent was obtained.

Biochemical and Genetic Characterization
Thymidine phosphorylase activity was assessed and quantified as

previously reported. The TYMP gene was Sanger-sequenced.15

Brain MR Imaging

Conventional Brain MR Imaging Protocol Acquisition. Brain MR

imaging was performed using a quadrature birdcage head coil.

The conventional MR imaging protocol included an axial and

coronal FLAIR T2 sequence, sagittal FSE T2, and axial FSE T1-

weighted imaging.

Proton MR Spectroscopy Protocol Acquisition. A volume of in-

terest of 8 cm3 was selected in the left parieto-occipital white

matter (PO-WM). Water-suppressed proton MR spectra were ac-

quired using the point-resolved spectroscopy single-voxel local-

ization sequence (PROBE) at TE � 35, 70, 100, 144, and 288 ms

(TR � 4000 ms, number of acquisitions � 64) to estimate the T2

of N-acetylaspartate, creatine plus phosphocreatine, and choline-

containing compounds16 for the group of healthy controls and for

3 of 7 patients.

For the remaining 4 patients, the left PO-WM spectrum was

acquired only at TE � 35 ms to limit the acquisition time to 4

minutes 16 seconds. In all subjects, unsuppressed water spectra

were also acquired at TE � 25, 30, 40, 50, 60, 80, 100, 300, 600,

900, and 1000 ms; with TR � 15,000 ms, as previously de-

scribed,16 to evaluate the water signal and T2 water relaxation

time.

Diffusion Tensor Imaging Protocol Acquisition. DTI was per-

formed by a single-shot echo-planar imaging sequence using 6

noncollinear directions of the diffusion gradients with the follow-

ing parameters: TR � 10,000 ms, TE � 107 ms, slice thickness �

4 mm with a 2-mm gap, voxel size � 1.25 � 1.25 � 6 mm3,

b-value � 900 s/mm2.

Proton MR Spectroscopy Data Analysis. Both suppressed and

unsuppressed water spectra were processed with the fitting pro-

gram LCModel (Version 6.3; http://www.lcmodel.com/).17 The

exclusion criterion for 1H-MR spectroscopy metabolite evalua-

tion was an LCModel estimated fitting error of �20%. The abso-

lute concentrations of NAA and Cho were obtained using the T2

times of the metabolites calculated by fitting the monoexponen-

tial decay of their signal in the water-suppressed PROBE spectra at

different TEs18 and estimating the intracellular water content by

the biexponential fit of water signal amplitude of the unsup-

pressed water spectra as detailed in the On-line Appendix. We

considered a T2 relaxation value reported in the literature for

mIns (150 ms)19 because TE values used for water-suppressed

spectra acquisitions are not sufficiently short to obtain an accu-

rate signal T2-decay of this metabolite.

Diffusion Tensor Imaging Data Analysis. DTI processing was per-

formed by using the FMRIB software library (FSL; http://www.

fmrib.ox.ac.uk/fsl). DTI-EPI images were coregistered and cor-

rected for eddy current and head movement effects using the

FMRIB Linear Image Registration Tool (FLIRT; https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). Parameter maps for mean dif-

fusivity (MD), fractional anisotropy (FA), axial diffusivity (AD,

�1), and radial diffusivity [RD, (�2 � �3)/2] were determined

voxelwise using the program DTIFit (https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/FDT/UserGuide#DTIFIT). The EPI images were regis-

tered to the T1-weighted images using FSL tools.

To correlate the DTI-derived parameters with the biochemical

profile, we defined an ROI on the DTI using the spatial coordi-

nates of the spectroscopy volume of interest localized in the left

PO-WM. Because in this ROI, WM fibers do not have a single

predominant orientation, additional ROIs were defined on MD

map images within white matter regions with high fiber direction-

ality to assess changes in AD and RD with greater accuracy,

namely the optic radiations, the posterior limbs of the internal
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capsule (PLIC), and the splenium of the corpus callosum (On-line

Fig 1). The mean values of MD, FA, AD, and RD were calculated

for each ROI.

Statistical Analysis
We first evaluated differences in demographic data between

patients and controls, using a t test or a Spearman �2 test as

appropriate. We performed a t test for unpaired data to evalu-

ate differences between patients and controls in quantitative

MR imaging values, namely metabolite concentrations, water

signals, T2brain water (BW) and T2CSF water relaxation times and

DTI parameters. Moreover, in the patient group, we per-

formed a Spearman test to evaluate the correlation between

MR spectroscopy metabolite values and DTI parameters. The

threshold for significance for all analyses was set at P � .05.

Postmortem Study
The postmortem study was performed in patient 7, eight months

after the MR imaging. Whole-body postmortem examination was

performed within 24 hours of death. The brain was removed and

fixed in 4% buffered formalin for neuropathologic examination.

Histologic, Histochemical, and Immunohistochemical
Analyses
Tissue specimens including frontal, temporal, parietal, occipital,

insular, and cingulate cortices; basal ganglia; thalamus; hip-

pocampus; amygdala, brain stem (midbrain, pons, medulla ob-

longata); and several blocks of cerebellar hemispheres, including

the dentate nucleus, and vermis, were obtained from formalin-

fixed brain tissue and used for histologic, histochemical, and

immunohistochemical analyses. Six-micrometer-thick sections

were stained with hematoxylin-eosin, periodic acid–Schiff, and

periodic acid—Schiff plus diastase, Luxol fast blue, congo red,

and PicroSirius Red. Immunohistochemical staining was per-

formed using a large panel of antibodies (On-line Appendix).

Molecular Analysis on Postmortem Brain Samples
Paraffin brain sections from patient 7 and 3 age-matched controls

(subjects who underwent postmortem examination for diagnos-

tic purposes without clinical/pathologic evidence of central

nervous system diseases) were subjected to laser capture micro-

dissection with the MMI Nikon UV-CUT System (Molecular Ma-

chines & Industries, Glattbrug, Switzerland), as previously de-

scribed20 (also see the On-line Appendix).

RESULTS
Genetic diagnosis and biochemical features of patients with

MNGIE are reported in Table 1.

MR Imaging: Bilateral Altered White Matter Signal
Brain MR imaging revealed a bilateral and nearly symmetric white

matter involvement characterized by hyperintensity on FLAIR T2

and FSE T2 and hypointensity on T1-weighted sequences in all

patients (Fig 1, On-line Fig 2, and On-line Table). Mild-to-severe

frontal and parieto-occipital white matter involvement was de-

tected in each patient. The temporal lobe white matter and basal

ganglia were affected in 5 patients, and the cerebellar white matter

and brain stem, in 4. Three patients (cases 1, 2, and 3) with milder

brain involvement showed signal intensity changes exclusively lo-

calized in the deep periventricular cerebral white matter with nor-

mal signal intensity of the infratentorial structures.

1H-MR Spectroscopy: Reduced Cerebral White Matter
Metabolite Concentrations
In PO-WM, patients showed a significant decrease of NAA, Cr,

and Cho concentrations. mIns, which had the highest metabolite

variability in patients with MNGIE, showed a trend toward

reduced concentration (Fig 2). Metabolite ratios such as NAA/

Cr, Cho/Cr, and mIns/Cr were similar in patients and controls

(Table 2).

T2BW values, calculated from the fast decay component of

the signal from unsuppressed water acquisitions and attribut-

able to both the intracellular and intramyelin water compart-

ments, were significantly higher in patients compared with

controls (Table 3 and On-line Fig 3).

DTI: Prominent Increase of White Matter Radial
Diffusivity
In the same PO-WM region selected for the MR spectroscopy

acquisition, patients with MNGIE showed significantly higher

MD, RD, and AD as well as significantly lower FA values com-

pared with controls. The RD increase, relative to mean control

values, was more prominent than the AD increase (RD, �52%;

AD, �23%). Similar results were obtained in the optic radiations.

Table 1: Demographic, genetic, and clinical features of patients with MNGIE

Case
No.

Age at MRI
(yr)/Sex TYMP Mutationa Mutation Type TP Activity

Age at
Neurologic Onset

Age at
Gastroenterologicb

Onset
1 23/F c.1249 dupC Frame shift Undetectable 20 yr (ptosis/CPEO) Childhood
2 29/F c.1160–2A�G and

c.1382_1383insC
Splice defect

Frame shift
Undetectable Childhood (CPEO) Childhood

3 28/M c.215–1G�A and
c.328C�T

Splice defect
p. Q110X

Undetectable 24 yr (ptosis/CPEO) 20 yr

4 27/F c.1160–1G�A Splice defect Very low 20 yr (ptosis/CPEO) Childhood
5 38/M c.522T�A Splice defect Undetectable 37 yr (ptosis/CPEO) 30 yr
6 25/M c.1160–1G�A Splice defect Very low 25 yr (peripheral

neuropathy)
19 yr

7 36/M c.457G�A p. G153S Undetectable Childhood (ptosis) 25 yr

Note:—CPEO indicates chronic progressive external ophthalmoplegia; TP, thymidine phosphorylase.
a All homozygote.
b Main gastroenterologic symptoms included irritable bowel and/or functional dyspepsia-like symptoms.
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In patients with MNGIE, the difference between RD and AD

changes was even more evident in the PLIC and splenium of the

corpus callosum, where a significant increase in RD values was

associated with unchanged AD in both ROIs (Table 3).

Correlation analysis between metabolite concentrations and

DTI metrics from the same PO-WM voxel in patients with

MNGIE disclosed a negative correlation between NAA absolute

concentration and MD (r � �0.82, P � .023), RD (r � �0.82,

P � .02), and AD values (r � �0.89, P � .007).

Neuropathology: Fibrosis of Small-Vessel Walls and
Microbleeding
Gross examination findings of the brain and vessels of the circle of

Willis were unremarkable. Microscopic examination revealed a

moderate pallor of the deep cerebral white matter extending fo-

cally into the internal capsule and thalamic white matter, while

sparing the arcuate fibers and the corpus callosum. These

changes, however, were not associated with a significant gliosis,

neuronal loss, or axonal degeneration. The gray matter was also

unremarkable.

The most striking feature was observed at the level of small

perforating arterioles, which showed a replacement of smooth-

muscle cells of the tunica media by dense fibrous tissue (Fig 3A–

C). Loss of smooth-muscle cells was more evident in the external

layers of the tunica media (Fig 3B), though a total fibrous replace-

ment was observed in some vessels (Fig 3C). These features were

particularly frequent in the white matter of the frontal lobe, the

basal ganglia, and the midbrain, but absent in pial arteries (not

shown). Fibrosis was occasionally associated with concentric wall

thickening and luminal narrowing (Fig 3D). In addition, hemo-

FIG 1. MR imaging. Axial FLAIR T2 images from 2 of the 7 patients with MNGIE at the supra- and infratentorial levels. Case 1 does not show any
infratentorial involvement, while a more diffuse supra- and infratentorial signal intensity increase can be seen in case 5.

FIG 2. Proton MR spectroscopy. A, Axial FLAIR T2-weighted image shows the localization of the 8-cm3 1H-MR spectroscopy volume of interest
in the left parieto-occipital white matter in case 5. Proton MR spectra from the VOI in case 5 (B) and in a healthy control (C). The relative content
of metabolites is similar in the patient and healthy subject. Note the higher level of noise in the patient and smaller metabolite peaks.
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siderin-laden macrophages, consistent with previous microbleed-

ing aspects, were observed close to fibrotic small vessels and cap-

illaries (Fig 3E). Immunohistochemical stains revealed increased

deposition of collagen IV in the basal lamina of several vessels (not

shown) and a slight perivascular gliosis (Fig 3F). The endothelial

layer, as observed by CD31 immunostaining, was unremarkable

(not shown). Immunostaining for amyloid was negative (not

shown).

Consistent with the mitochondrial etiology of the disease,

scattered neurons showed decreased expression of the mtDNA-

encoded COX I subunit. This feature was particularly evident in

the subependymal region of the lateral ventricles (not shown) and

was paralleled by mtDNA depletion in different regions of the

brain (frontal gray and white matter, and substantia nigra) and,

most important, in microdissected vascular smooth-muscle and

endothelial cells (Fig 4).

DISCUSSION
We documented that leukoencephalop-

athy, the hallmark of brain MR imaging

in MNGIE, is characterized by dilution

of all metabolites associated with a

prominent increase of the radial compo-

nent of water diffusion in multiple white

matter regions. These results, obtained

in 7 patients, combined with the post-

mortem findings in the brain of one of

them, support the hypothesis that neu-

roradiologic abnormalities in MNGIE

result from microvascular damage. In-

deed, we found a diffuse replacement of

the vascular wall by dense fibrous tissue

and multiple perivascular microbleeds

in the white matter of the frontal lobe, in

the basal ganglia, and in the midbrain.

Pathologic features of vessels are rem-

iniscent of those described in cerebral

microvessel disease21-23 and point to

impaired intracerebral blood flow regu-

lation and blood-brain barrier permea-

bility as synergic mechanisms leading to

increased intracellular and intramyelin

water content. The fibrosis of vascular

smooth-muscle cells is in line with that

observed in the external layer of the

muscularis propria of the gastrointesti-

nal tract,8 which is the main factor re-

sponsible for the severe dysmotility oc-

curring in most patients with MNGIE.

Analogous to observations in the mus-

cularis propria and small vessels of the

gastrointestinal wall, brain angiopathy is

also characterized by a severe mtDNA

depletion and COX deficiency, triggered

by the toxic effects of high circulating

levels of nucleosides.8 A previous brain

neuropathologic study of 2 patients with

MNGIE showed an increase of albumin

immunoreactivity in the cytoplasm of reactive astrocytes com-

pared with controls.14 This finding was interpreted as a result of a

functional blood-brain barrier alteration, as suggested by the em-

bryogenic role played by TYMP in glial proliferation.24

In all our patients, brain MR imaging demonstrated a typical,

diffuse (mild-to-severe) leukoencephalopathy, in striking con-

trast to the absence of clinical central nervous system involve-

ment, as observed in previously reported patients.6 In particular,

in mildly affected patients, MR imaging signal alterations were

confined to the subependymal deep cerebral white matter, while

in the severely affected patients, these changes extended to the sub-

cortical white matter, deep gray matter, and subtentorial structures.

This gradient of MR imaging white matter abnormalities parallels the

prominent COX deficiency seen in case 7 in the periependymal tis-

sue, which may be damaged first by high CSF levels of thymidine.
1H-MR spectroscopy of the cerebral white matter of patients

Table 2: 1H-MRS white matter parieto-occipital metabolite absolute concentrations, ratios,
and water signal intensity, and T2 values in patients with MNGIE and healthy controls

Patients with
MNGIE (n = 7)
(mean � SD)

Healthy Controls
(n = 9)

(mean � SD)
P

Valuea

Metabolite concentrations (mM)
NAA 6.98 � 0.79 9.81 � 0.94 �.001a,c

Cr 4.15 � 0.48 5.97 � 0.55 �.001a,c

Cho 1.53 � 0.23 1.89 � 0.24 .01a

mIns 4.46 � 1.14 5.44 � 0.76 .06a

Metabolite ratios
NAA/Cr 1.85 � 0.18 1.80 � 0.11 .57b

Cho/Cr 0.39 � 0.06 0.33 � 0.04 .04b

mIns/Cr 0.99 � 0.27 0.85 � 0.08 .16b

Water signal (a.u.)
SBW (0) (14.0 � 9.0)�1010 (10.8 � 2.0)�1010 .370
SCSF (0) (4.0 � 7.5)�1010 (1.3 � 0.6)�1010 .23a

T2 water
T2BW (ms) 112 � 24 75 � 8 .001a,c

T2CSF (ms) 520 � 185 776 � 344 .098a

Note:—a.u. indicates arbitrary units; SBW (0) and SCSF (0), water signals corresponding to brain and cerebrospinal water,
respectively; T2BW and T2CSF, water relaxation times corresponding to brain and cerebrospinal water, respectively.
a Statistical significance was set at P � .0125 after Bonferroni correction for multiple comparisons.
b Statistical significance was set at P � .0167 after Bonferroni correction for multiple comparisons.
c Significant.

Table 3: DTI derivate metrics in patients with MNGIE and healthy controls
ROI MD (Mean � SD) FA (Mean � SD) AD (Mean � SD) RD (Mean � SD)

PO-WM
MNGIE 1.09 � 0.16 0.27 � 0.05 1.40 � 0.16 0.93 � 0.16
Controls 0.79 � 0.05 0.40 � 0.02 1.14 � 0.07 0.61 � 0.05
P Valuea �.0001b �.0001b .0001b �.0001b

OR
MNGIE 1.15 � 0.20 0.41 � 0.07 1.69 � 0.19 0.88 � 0.21
Controls 0.81 � 0.05 0.59 � 0.09 1.35 � 0.12 0.54 � 0.06
P Valuea �.0001b .0003b .0002b �.0001b

PLIC
MNGIE 0.78 � 0.06 0.61 � 0.07 1.40 � 0.06 0.47 � 0.08
Controls 0.69 � 0.05 0.70 � 0.04 1.36 � 0.11 0.35 � 0.05
P Valuea .0019b .0008b 0.36 .0003b

CC
MNGIE 0.88 � 0.08 0.66 � 0.06 1.64 � 0.11 0.49 � 0.10
Controls 0.81 � 0.09 0.76 � 0.06 1.72 � 0.19 .35 � 0.08
P Valuea .12 .0012b 0.37 .0028b

Note:—OR indicates optic radiation; CC, corpus callosum.
a Statistical significance was set at P � .003 after Bonferroni correction for multiple comparisons.
b Significant.
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with MNGIE showed significant reduc-

tions of NAA, Cho, and Cr concentra-

tions. The increase of the T2 of the wa-

ter signals, derived from a slower

decay of the unsuppressed water signal

at a short TE (26 –300 ms), may be at-

tributed to both intramyelinic and in-

tracellular water.25 The significant in-

crease in T2 of intracellular water of

patients compared with controls sug-

gests the enlargement of the intracellular

compartment and consequently sup-

ports the hypothesis of a dilution effect

underpinning the decreased metabolite

concentrations. Previous 1H-MR spec-

troscopy studies performed on 7 patients

with MNGIE suggested unchanged me-

tabolite ratios in the cerebral white mat-

ter.11-13 For the first time, we provide

absolute metabolite quantification by

acquiring unsuppressed water spectra at

multiple TEs, to distinguish intra- from

extracellular water.18

In our patients with MNGIE, the

DTI metrics in the same parieto-occipi-

tal voxel of the 1H-MR spectroscopy

study showed an increase of mean diffu-

sivity and a decrease of fractional anisotropy values, with a more

prominent involvement of the radial than longitudinal diffusivity.

To better estimate variations in axial and radial diffusivity, con-

sidering the abundance of white matter crossing fibers in the pa-

rieto-occipital voxel, we also evaluated DTI metrics in WM tracts

with high fiber directionality, such as the optic radiations, PLIC,

and splenium of corpus callosum. In all these structures, a prom-

inent increase of radial diffusivity was confirmed (Table 3). ROIs

of the splenium of the corpus callosum and PLIC showed a selec-

tive increase in radial diffusivity with unchanged axial diffusivity.

Radial diffusivity is considered a measure of myelin integrity,26 as

demonstrated by its selective increase in the corpus callosum of

animal models with cuprizone-induced demyelination27,28 and in

the optic nerves of mice with demyelination resulting from retinal

ischemia.29 Similarly, in patients with relapsing-remitting multi-

ple sclerosis, tract-specific DTI analysis of the optic radiations

showed selective increases in RD only within the T2 lesions and,

therefore, related to local myelin disruption.30

The absence of demyelination at postmortem examination in

one of our patients with MNGIE as well as in the other 2 previ-

ously reported cases14 points to increased intramyelin water con-

tent as the most likely explanation for prominent or selective ra-

dial diffusivity found in brain white matter structures in our

patients. A negative correlation between N-acetylaspartate con-

centration and mean diffusivity values within the same white mat-

ter volume was demonstrated, supporting the hypothesis of a

dilution effect as the basis of the metabolite concentration reduc-

tion, possibly affecting neuronal cells, because no correlation was

observed between any other metabolite concentration expressed

in either neural or glial cells and any DTI metrics.

FIG 3. Histologic features of brain vessels in patient 7 with MNGIE. A, Representative image of a
penetrating arteriole showing increased collagen deposition in the tunica media (arrow) (H&E,
original magnification �40). B, Loss of smooth-muscle cells of the tunica media in a penetrating
vessel, especially evident at the outermost layer (smooth-muscle actin, original magnification
�40). C, A thick fibrous coat completely replaces the 3-layer structure of a penetrating vessel
(PicroSirius Red, original magnification �40). D, Fibrous replacement is associated with luminal
narrowing in a small brain vessel (PicroSirius Red, original magnification �40). E, Perl iron stain
consistent with hemosiderin deposits close to a brain capillary (Perls stain, original magnification
�40). F, Perivascular gliosis (glial fibrillary acidic protein, original magnification �40).

FIG 4. The mtDNA amount in the brain of patient 7 with MNGIE. A,
mtDNA amount in smooth-muscle and endothelial cells microdis-
sected by laser capture from an MNGIE brain and controls (n � 3)
(expressed as mtDNA copy per nucleus). B, The mtDNA amount in
different cerebral regions microdissected by laser capture from
MNGIE and controls (n � 3) (expressed as mtDNA copy per nucleus).
SN indicates substantia nigra; CTR, controls.
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In addition to fibrous replacement of the vascular wall, the

neuropathologic study revealed multiple microbleeds in the white

matter of the frontal lobe, basal ganglia, and midbrain. None of

the MNGIE T2-weighted images revealed foci of local signal loss

consistent with the presence of hemosiderin deposits,31 though

sequences such as gradient-echo T2*-weighted susceptibility-

weighted imaging, the most sensitive MR imaging for the detec-

tion of hemosiderin deposits,32 were not acquired. However, the

neuroradiologic and clinical features characterizing small-vessel

disease, such as lacunar strokes and progressive cognitive de-

cline,33 were absent in all our patients, suggesting key differences

of small-vessel involvement in MNGIE compared with other

conditions.

CONCLUSIONS
White matter metabolic and microstructural alterations detected

in patients with MNGIE can be related to microangiopathy in the

deep white matter and an energy metabolism deficit in the sub-

ependymal cells. Leukoencephalopathy in MNGIE may be the

result of endothelial failure due to thymidine toxicity and mtDNA

depletion, which may induce blood-brain barrier dysfunction and

microangiopathy, leading to increased white matter water con-

tent. The question of whether leukoencephalopathy is a reversible

feature cannot be solved at present. Long-term follow-up of pa-

tients with bone marrow34,35 and liver transplantation36 will

likely provide an answer.
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