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ABSTRACT 

Background: Smoking is a serious public health issue linked to more than 8 million deaths per year 

worldwide. It also may lead to nicotine dependence (ND). Smoking can induce long-lasting epigenetic 

changes. Although epigenetic alterations related to tobacco smoke have been largely studied, few works 

have investigated ND and its interaction with smoking status (SS). Objective: We investigated the 

peripheral epigenomic profile of SS and ND in a U.S. male veteran cohort. Methods: DNA from saliva 

was collected from 1,135 European American (EA) male U.S. military veterans. DNAm was assessed 

using the Illumina Infinium Human MethylationEPIC BeadChip array. SS was evaluated as: current 

smokers (n=137; 12.1%) and non-current smokers (never and former smokers; n=998; 87.9%). ND was 

assessed using the Fagerström Test for Nicotine Dependence (FTND). EWAS and co-methylation 

analyses were conducted for SS and ND. Results: A total of 450 and 22 genome-wide significant 

differentially methylated sites (DMS) were associated with SS and ND, respectively (fifteen overlapped 

sites). We identified 97 DMS (43 genes) in SS-EWAS previously reported in the literature, including 

AHRR, and F2RL3 genes (p-value range: 1.95x10-83 to 4.5x10-33). ND novel DMS mapped to NEUROG1, 

ANPEP, and SLC29A1. Co-methylation analysis identified 386 modules (11 SS-related and 19 ND-

related). SS-related modules showed enrichment for alcoholism, chemokine signaling pathway, and 

neurogenesis; while ND-related modules were enriched for cellular adhesion, and nicotine addiction. 

Conclusions: This study confirms previous findings and identifies novel and -potentially specific - 

epigenetic signatures for SS and ND in a sample of EA male veterans.   
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INTRODUCTION 

 

Smoking is a serious public health issue associated with increased risk of numerous diseases such as 

cancer, stroke, and chronic obstructive pulmonary disease. Tobacco smoking is responsible for more than 

8 million deaths per year, with highest prevalence in males aged between 45 to 54 years on a global scale  

(1). In the U.S., 13.7% of adults are current smokers (2), reaching even higher rates among U.S. veterans 

than non-veterans, about 29.2% according to the 2010-2015 National Survey on Drug Use and Healthy 

data (3). 

 

Nicotine is the main component of tobacco smoking associated with addiction, but other constituents of 

tobacco smoke also contribute to the addiction process (4). Nicotine and other constituents of tobacco 

smoke act on brain reward circuits underlying both recreational and compulsive use (5). Regular tobacco 

use can produce nicotine dependence (ND), identified clinically by withdrawal symptoms upon abrupt 

discontinuation. Several distinguishable stages of the smoking addiction process are highly heritable, 

including smoking persistence (h=46-59%) and ND (h=up to 75%) (6). Genome-wide association studies 

(GWAS) have identified genetic risk variants for both smoking behavior and ND (5, 7, 8). However, as is 

often the case for complex traits, these variants only explain a small proportion of the variance in this 

disorder.  

 

The interplay of genetic and environmental mechanisms is often expressed through epigenetic processes. 

DNA methylation (DNAm), one of the most studied epigenetic mechanisms, has been previously shown 

to be associated with smoking behavior. Epigenome-wide association studies (EWAS) approaches have 

identified epigenomic biomarkers associated with smoking in multiple tissues: blood (9-15), newborn 

blood (16), lung (17, 18), adipose tissue (19), buccal cells (20), and saliva (21)). While a large number of 

CpG sites have been associated with tobacco smoking status (SS), few studies to date have examined 

epigenomic changes associated with ND. One of the most important sets of findings from large-scale 
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GWAS of substance use disorders (SUDs) is that dependence traits and quantity/frequency traits often 

have fundamentally different genetic substrates (22-24). Quantity/frequency measures have been 

extensively studied for nicotine; dependence traits have been less commonly evaluated. Thus, one of the 

goals of this study, in separating our dependent and nondependent nicotine use, was to investigate 

whether similar use/dependence differences exist in the context of epigenetics. In this study, we 

conducted EWAS and co-methylation analyses for SS and ND in a veteran cohort (n=1,135) to elucidate 

the epigenomic signatures (shared and unique) of these two traits. 

 

METHODS AND MATERIALS 

Study population 

Our cohort included 1,135 male veterans who self-reported European ancestry from the National Health 

and Resilience in Veterans Study (NHRVS) (25, 26). The sociodemographic and clinical characteristics 

of the study sample are presented in Table 1. Participants were recruited from the Knowledge Networks 

research panel, which comprises more than 50,000 households developed and maintained by the Ipsos 

survey research firm. The study was approved by the Human Subjects Subcommittee of the Veterans 

Affairs (VA) Connecticut Healthcare System and VA Office of Research & Development and all 

participants provided informed consent. 

Smoking characteristics and FTND assessment 

SS was evaluated as current smokers and non-current smokers (including both never and former 

smokers). ND was defined using the Fagerström Test for Nicotine Dependence (FTND) assessment (27). 

The study sample showed a 12.1% prevalence of current smokers (N=137; of which 48.9% are nicotine 

dependent) and lifetime FTND score distribution ranging from 0 to 10 (mean = 2.58 and standard 

deviation = 2.83; N=238 with FTND >=5) (Supplementary Figure S1). 
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DNA extraction, sample preparation, and array processing 

Genomic DNA (500ng) from saliva samples was extracted using Oragene kits (DNA Genotek, Ottawa, 

Ontario, Canada). The DNA was treated with bisulfite reagents using the EZ-96 DNA methylation kit 

(Zymo Research, Orange, CA, USA) following the standard protocol. DNAm was assessed with the 

Illumina Infinium Human MethylationEPIC BeadChip (Illumina, San Diego, CA, USA), which detected 

>850,000 loci across the genome. The DNAm assay was conducted at the Yale Center for Genome 

Analysis (YCGA) and GenomeStudio software (Illumina) was used to generate β values for all CpG sites. 

The β values were calculated from the total methylated signal (M) and the unmethylated signal (U) 

whereby β = M/(M+U), which vary from 0.0 to 1.0. 

 

Quality control and data normalization 

Quality control analysis was conducted in R (version 3.4.1) using the ‘minfi’ package (Bioconductor 

1.8.9) (28). Probes filtered out included those with detection p-value > 0.001, probes located in known 

single nucleotide polymorphisms (SNPs) at SBE/CpGs sites, probes mapped in multiple places in the 

genome, and probes in sex chromosomes. To correct for batch effects, the ComBat function was applied 

using the ‘sva’ package (29) and normalization was conducted using internal probes to control for 

technical variation. To evaluate the distribution of beta values, density plots were generated before and 

after normalization (Supplementary Figure S2).  

Cell proportion estimation analysis was conducted using an adjusted version of the Houseman method 

(30). The analysis enabled an estimate of each cell type proportion (e.g. CD14, CD34, and buccal cells) in 

the heterogeneous peripheral saliva samples, which were included in the model. Principal component 

analysis was also performed to adjust for population stratification using the Barfield method (31), which 

uses sets of CpGs within 50kb of SNPs with minor allele frequency (MAF) > 0.1 described in the 1000 

Genomes Project. The first 10 principal components were included in the model. After quality control, a 

total of 756,573 CpG sites (71.93%) were used for EWAS and co-methylation analyses.  
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Statistical Analysis   

To identify DMS, we conducted an EWAS analysis using the ‘cpg.assoc’ function from the ‘minfi’ 

Bioconductor R package (28). Covariates included: age, estimates of cell type proportions (CD14, CD34, 

Buccal cells), and the first 10 principal components (PCs).  In the ND EWAS analysis, SS was included 

as a covariate. Bonferroni correction was used to adjust for multiple testing. 

SS EWAS model: 

𝛽 ~ 𝑆𝑆 +  𝐴𝑔𝑒 +  𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝐶𝐷14, 𝐶𝐷34, 𝐵𝑢𝑐𝑐𝑎𝑙 𝑐𝑒𝑙𝑙𝑠)  +  𝑃𝐶1 − 10 

ND EWAS model: 

𝛽 ~ 𝐹𝑇𝑁𝐷 +  𝐴𝑔𝑒 +  𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 (𝐶𝐷14, 𝐶𝐷34, 𝐵𝑢𝑐𝑐𝑎𝑙 𝑐𝑒𝑙𝑙𝑠)  +  𝑃𝐶1 − 10 +  𝑆𝑆 

 

Gene Ontology analysis 

The ‘gometh’ function was performed using the Bioconductor R package “missMethyl” (32), which 

accounts for the varying number of CpG sites per gene by assigning a prior probability for each gene 

based on gene length. This method applies a modified hypergeometric test for over-representation of a 

gene set. For this analysis, we selected CpG sites that showed the suggestive significance of p<1.0×10-5. 

To correct for multiple testing, false discovery rate (FDR) was set at 0.05. 

 

Interactome analysis 

The protein-protein interaction (PPI) analysis was conducted using the STRING database (Version 11.0) 

(33). STRING combines the probability of different sources including genomic prediction, high-

throughput experiments, co-expression analysis, text mining in available papers, and databases. It 

generates a score for each interaction to indicate the confidence in that interaction. SS- and ND-related 

genome-wide significant (GWS) DMS were used as input with a medium confidence of 0.4. 

 

Co-methylation analysis 
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Normalized beta values were used to perform the co-methylation analysis, which was conducted using the 

“WGCNA” R package (Version 1.69) (34). Methylation level of CpG sites was clustered in modules 

represented by eigengene, defined as the first principal component of the module. We identified modules 

associated with SS and ND with correlation>=|0.07| and p-value>=0.05. For correlated modules, we 

evaluated the gene significance and module membership. Finally, we identified the modules enriched for 

DMS. GO enrichment analysis was conducted on all modules associated with SS or ND. Modules 

containing only one DMS were removed and the observed/expected rate (OER) was calculated. 

Functional annotation analysis was performed for the correlated modules and modules with OER>1.  

 

RESULTS 

 

SS- and ND-related differential methylated sites 

Manhattan plots for SS and ND are depicted in Figure 1. Quantile-quantile plots of each analysis are 

shown in Supplementary Figure S3, with lambda values of 1.41 and 1.11 for SS and ND, respectively. 

After Bonferroni correction, 450 DMS were identified for SS (Supplementary Table 1), and 22 DMS for 

ND (Supplementary Table 2).  

 

GWS DMS associated with SS included 97 CpGs previously described in the literature as smoking-

related, including the commonly identified AHRR (cg05575921, cg11554391, cg12806681, cg21161138, 

cg24090911, cg24688690, cg25648203, cg26703534), F2RL3 (cg03636183), sites near ALPPL2 gene 

(cg21566642, cg01940273, cg03329539), RARA (cg17739917, cg19572487), CNTNAP2 (cg21322436, 

cg25949550), CYP1B1 (cg20408276), GFI1 (cg09935388, cg12876356), IER3 (cg14753356, 

cg15342087, cg24859433), IGHJ6 (cg03686998, cg15310518, cg27271698), PRSS23 (cg00475490, 

cg11660018, cg14391737).  GWS DMS previously identified in the literature are listed in 

Supplementary Table 1. Further, we also identified a novel EWS DMS located near the CYP1B1 gene 

(cg19753864), a gene previously described in epigenome studies as associated with smoking.  
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The ND-associated GWS DMS (Table 3) included 14 CpGs previously identified in the smoking EWAS 

literature mapping to ALPPL2 (cg21566642, cg01940273), AHRR (cg05575921), F2RL3 (cg03636183, 

cg21911711), PRSS23 (cg14391737, cg00475490), PPCDC (cg18110140), AC068134.6 (cg16841366), 

and intergenic region (cg01940273, cg14753356, cg00045592, cg07251887, cg06644428). In addition, 

we found eight novel GWS DMS associated with ND in ANPEP (cg06344992, cg23432008, 

cg02008229), within CYP1B1 (cg19753864), SLC29A1 (cg03634967, cg04175292), NEUROG1 

(cg04330449), and intergenic region (cg06581475).  

 

GO (Supplementary Table 3) and KEGG (Supplementary Table 4) analyses were performed for SS- 

and ND-related GWS DMS. SS-associated GWS DMS were enriched to GO terms related to secondary 

metabolic processes, response to stimulus and xenobiotic metabolic processes (Figure 2A), and KEGG 

pathways (Figure 2B) related to chemokine signaling pathways, drug metabolism, and chemical 

carcinogenesis. For ND-related GWS DMS, no enriched terms were identified with FDR < 0.05. 

 

Comparison between SS- and ND-associated DMS 

SS- and ND-associated GWS DMS were examined for overlap to identify the common DMS between the 

two traits and those specific for each trait (Figure 3A and 3B). We identified 435 SS-specific DMS, 15 

DMS shared between SS and ND, and 7 ND-specific DMS.  

From the 435 SS-specific DMS identified, 152 were hypermethylated and 283 hypomethylated.  DMS 

were identified mapped to genes previously associated with smoking, as CSRNP1, ZMIZ1, CPAMD8, 

GFI1, MTSS1, NFE2L2, and AKR1B1. 

 

All overlapping DMS between SS and ND showed the same direction of effect (Supplementary Figure 

S4), from which five were consistent with the smoking literature (cg21566642, cg05575921, cg01940273, 

cg14753356, cg19572487); there were no previous reports for the other DMS. The association was 
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statistically stronger in ND than in SS for the majority of ND-associated sites, except cg14391737 (SS: 

3.25E-10, ND: 6.70E-21; PRSS23), cg00475490 (SS: 1.17E-12, ND: 1.93E-13; PRSS23), and 

cg06581475 (SS: 1.98E-08, ND: 8.25E-09).  

 

From the 7 ND-specific DMS identified, 6 were hypermethylated in ND and 1 was hypomethylated 

(cg06644428; previously associated as smoking-related in the literature). Novel DMS were located in 

ANPEP (cg06344992, cg23432008 and cg02008229), SLC29A1 gene (cg03634967 and cg04175292), 

NEUROG1 gene (cg04330449). PPI analysis (Figure 3C) showed interactions between the gene products 

identified in SS and ND EWAS as SLC29A1 (ND) and SLC22A4 (SS).  

 

Co-methylated modules related to SS and ND 

A total of 386 modules were identified in the co-methylation analysis, of which 26 had more than 1000 

CpGs. The eigengenes calculated to represent each module were tested for correlation with SS and ND. 

Low correlation was observed between SS and ND, reaching a maximum of 0.09 and a minimum of -

0.14. We identified 11 modules associated with SS (Figure 4A) and 19 modules associated with ND 

(Figure 4B) with cor>=|0.07| and p-value<0.05. No overlap was observed between SS and ND.  OER are 

shown for modules containing DMS associated with SS (Figure 4C) and ND (Figure 4D).   

 

Functional enrichment analysis (Figure 5) identified seven significantly enriched modules. For SS, 

enriched modules included yellow (positively correlated), brown (positively correlated and OER>1), blue 

(negatively correlated and OER >1), and pink (OER > 1). For ND, enriched modules included steelblue 

(negatively correlated), turquoise (positively correlated), pink (OER>1), brown (OER>1), and grey 

(OER>1). Yellow and blue modules were only correlated with SS and were enriched for Ras signaling 

pathway, cell adhesion, and ion transmembrane transport. Steelblue, turquoise, and grey modules were 

only correlated with ND and showed enrichment for nicotine addiction, synaptic signaling, and cellular 
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component organization. Brown and pink modules were detected in both SS and ND and enriched for cell 

communication, neuroactive ligand-receptor interaction, neurogenesis, and nervous system development.  

 

DISCUSSION 

Few works have investigated epigenetics marks associated with ND and evaluate its differences with SS. 

In this work, we studied DNA derived from saliva, i.e. peripheral tissue, in a cohort of male EA U.S. 

military veterans. We identified SS-associated GWS DMS in saliva trait previously found in blood, lung 

tissue, and adipose tissue. Our results identified 435 SS- and 7 ND-specific GWS DMS while also 

identifying those common between the two traits (15 DMS). Six sites associated with ND were novel, as 

were 356 associated with SS. The ND analysis identified three novel DMS in NEUROG1, ANPEP, and 

SLC29A1. Co-methylation analysis identified methylomic networks based on the intercorrelation between 

CpG sites. The SS analysis showed correlated modules enriched for neurodegenerative disorders such as 

Alzheimer and Parkinson’s disease, as well as alcoholism. ND co-methylation analysis identified 

correlated modules involved in nicotine addictionion.  

 

From the 450 GWS DMS identified in the SS EWAS, at least 97 were previously described in the 

literature as being associated with smoking literature. Our top hit identified in the SS model (cg05575921, 

p-value=4.54E-83) is within the AHRR gene, a well-known locus that acts in the aryl hydrocarbon 

receptor signaling cascade. This CpG was hypomethylated in current-smokers compared to non-smokers, 

as reported in other peripheral tissues including blood (9-12), lung (17, 18), adipose tissue (19), and 

buccal cells (20). Further, 13 additional GWS DMS in AHRR were detected (minimum p-value = 5.73E-

8), of which seven were previously described. The methylation pattern in the cg05575921 site is a known 

biomarker of smoking behavior, showing a reversible pattern after smoking cessation (9). AHRR variant 

(rs1051730) was also described as a likely causal genetic marker attributable to heavy smoking behavior 

and the hypomethylation in cg05575921 has been related to high smoking-related morbidity and with 

high all-cause mortality (9).  
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We also identified two GWS DMSs in the F2RL3 gene (cg21911711, p-value = 4.48E-17; cg03636183, 

p-value = 5.61E-43). From a prior EWAS of smoking in blood, its methylation pattern may reflect 

tobacco exposure status, varying from less methylation in current smokers to higher levels in never 

smokers (35).  A causal relationship has been suggested between F2LR3 methylation pattern, smoking, 

and cardiovascular diseases related to smoking (35). An association of F2RL3 hypomethylation with 

smoking has been also reported with lung cancer incidence and mortality (36), so it is also considered a 

strong predictor of mortality, including in smoking-related diseases (37).  

We detected three DMS in the PRSS23 gene (cg14391737, cg00475490 and cg11660018), which encodes 

a member of the trypsin family of serine proteases. Methylation changes in PRSS23 gene was recently 

associated with cadmium and smoking exposure in a EWAS study of the Strong Heart Study (38). 

Further, it was reported the PRSS23 is essential for the cardiac valvulogenesis in zebrafish embryos (39), 

and is associated with tumor progression in cancer (40, 41). Besides, the repression of PRSS23 gene by 

the miR-532 showed a protective effect in cultured cardiac endothelial cells (42). Another notable site is 

cg21566642, located near the ALPPL2 gene. ALPPL2 is a member of the alkaline phosphatase family and 

has high homology with the placental alkaline phosphatase (ALPP) (43). Its expression was detected in 

different types of mesotheliomas, being classified as a tumor-specific antigen (43).   

SS EWAS DMSs show enrichment of genes involved in metabolic pathways and biological functions 

related to toxic metabolic processes, xenobiotics metabolic processes, and response to xenobiotic 

stimulus. This is consistent with the physiological necessity to clear the products of combustion inhaled 

by the smoker. In a study examining metabolite composition of smokers, xenobiotics have been identified 

as associated with smoking behavior (44). Further, we also identified enrichment of genes involved in the 

drug metabolism pathway and drug metabolism by cytochrome P450, a membrane-bound in cellular 

organelles (mitochondria and endoplasmic reticulum) involved in drug, steroid, and carcinogen 

metabolism (45). 
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In the ND EWAS, at least 14 GWS DMS (from 22) were previously described in the smoking literature, 

including AHRR, F2RL3, and a CpG near ALPPL2 (top DMS in ND analysis). From all 22, we observed 

15 DMS overlapped with SS, of which twelve showed a smaller effect size ((MeanβSS – Meanβnon-

smoker)/Sd) in the analysis of SS relative to ND. For three DMS with a larger effect size in ND than in SS, 

two were within the PRSS23 gene. A violin plot (Figure 6) of cg21566642(ALPPL2), cg14391737 

(PRSS23), cg05575921 (AHRR), and cg04330449(NEUROG1) showed a similar direction between 

current-smokers and ND after excluding smokers and individuals with nicotine dependence.  

ND-specific GWS DMS map to NEUROG1, ANPEP, and SLC29A1. Of the ND-specific DMS, only one 

was previously reported as SS-related: cg06644428 (10, 19). From the ND-specific GWS DMSs, though 

six DMSs were not previously reported in EWAS of smoking, three genes were already described in 

smoking literature. The NEUROG1 gene encodes a transcriptional regulator that may promote neuronal 

differentiation (46). Differential methylation in this gene was previously associated with maternal 

smoking during pregnancy in the offspring cord blood (47). Though the study did not differentiate 

between SS and ND and they detected a DMS in a different CpG site, the direction effect was the same as 

in our study. However, no information about nicotine dependence prevalence in the mothers were 

provided or tested in that study. Our study suggests that differential methylation at NEUROG1 may be 

specific to ND and therefore may be a potential biomarker for ND. An additional ND-specific DMS was 

located in the ANPEP gene. ANPEP is a diabetes risk gene (48), which was recently identified as SS-

associated in a EWAS examining the effects of cadmium and smoking in the Strong Heart Study cohort in 

blood tissue (38). SLC29A1 mediates uptake of nucleosides and is not correlated to smoking in EWAS.  

The network containing the annotated genes in SS and ND-related EWAS showed a correlation between 

all genes, including mostly textmining and co-expression information, further supporting the 

functionality/biological relevance of our findings. More research is needed to replicate these ND findings 

in independent cohorts to confirm these associations. No enrichment was found to ND-associated GWS 

DMS. 
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In the SS co-methylation analysis, we identified two positively correlated modules, yellow and brown. 

The yellow module showed enrichment for ion transmembrane transport, regulation of Rho protein signal 

transduction, and cytoskeleton organization. In a study using epithelial 3D culture, a significant reduction 

in ion channel function in cells treated with tobacco product preparation was observed, while no effect 

was observed using nicotine alone (49). The brown module showed enrichment related to cell 

communication and cell adhesion. This biological process has been previously identified in a smoking 

transcriptome analysis (50). This indicates that methylation changes observed in our work may impact 

gene expression. 

We also found one negatively correlated module (blue), which showed enriched terms related to cell 

junctions’ organization, extracellular matrix organization, and actin filament-based process. Previous 

studies have found that cigarette smoking changes the secretion of proteins related to extracellular matrix 

organization in lung epithelial cells responded, indicating smoking-induced tissue remodeling (51).These 

three modules included DMS, however, just brown and blue modules showed OER > 1. Our findings 

demonstrate the effects of smoking on multiple biological processes via epigenetic changes.  

 

In the ND co-methylation analysis, the top correlated modules included the steelblue (negatively 

correlated) and the turquoise (positively correlated). The steelblue module is enriched for chemical 

synaptic transmission, cell-cell signaling, and nicotine addiction. The genes related to nicotine addiction 

in those modules are depicted in Figure 7 and include GABRA1 (cg12340947), GABRA2 (cg09430391), 

GABRA4 (cg24154839), GABRB2 (cg11042722), and GRIN1 (cg10538151). GABRA1, GABRA2, 

GABRA4, GABRB2 encode parts of the GABA receptor. GWAS studies have found that variations in 

GABRA2 gene influences the risk and susceptibility to alcohol dependence (52, 53). Further, genetic 

variants in GABRA2 gene have been associated with ND (54) and alcohol use (55) in the candidate gene 

era; they await genomewide-level replication. Although mutations in GABA receptors have not been 

directly associated with smoking, studies suggest a role in nicotine addiction. Animal studies have shown 

that GABAB receptors moderate the effects of reward induced by nicotine (56). In bronchial epithelial cells 
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of rhesus monkeys, nicotine induces an upregulation of GABA signaling (57). The turquoise module 

showed enriched terms related to cellular organization and focal adhesion. Previous studies showed that 

cell adhesion metabolism has been implicated in the maintenance of connectivity in the nervous system, 

in which neurexins are involved (58). Multiple CpGs within Neurexin-1𝛽 (NRXN1) were identified in the 

turquoise module. NRXN1 is involved in  nicotinic acetylcholine receptors’ activity and neurotransmitter 

release in the presynaptic and postsynaptic sites (59). We also identified one module for ND with OER > 

1, which indicates an enrichment of ND-associated DMS (grey). The grey module showed enrichment for 

chemical synaptic transmission and neuroactive ligand-receptor interaction. It has been shown that 

nicotine exposure during cortical development induces alterations in histone methylation responsible for 

regulating the expression of genes involved in maintenance of glutaminergic synapses (60). Our findings 

suggest a link between the neuronal effect of ND and methylation patterns in saliva. Two modules 

indicate enrichment for DMS from both SS and ND analysis, the brown (previously discussed) and pink 

module. The pink module showed enrichment of pathways related to regulation of cell differentiation, 

neurogenesis, and nervous system development. A recent study showed that exposure to intrauterine 

smoking might alter DNAm patterns associated with mature neuronal content (61). 

 

The main limitation of the study is the inclusion of former smokers in the non-current smokers group, 

which may reduce the contrast between the methylation pattern of smokers and non-current smokers. 

Further, while efforts were made to carefully ascertain ND by adding SS as a covariate in the analysis, 

this approach may not entirely capture the effects of SS in our ND analysis, as allowed the identification 

of genes related with toxicity in ND approach. Therefore, research is needed to further confirm potential 

ND-specific associations, analyze the impact of nicotine vs. non-nicotine constituents on toxicity and 

addiction, and replicate these findings in independent cohorts. While this helps to improve statistical 

power of a comparatively small sample, ongoing efforts include more samples, the addition of women as 

well as other ancestries, such as African, to evaluate whether these associations can also be observed 
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across sexes and populations. Future work will focus on examining these associations in human 

postmortem brain tissue and animal models to further dissect the differences between SS and ND. 

 

In conclusion, we detected 450 SS-related DMS and 22 ND-related DMS, which 357 and six was novel 

findings in smoking literature for SS and ND analyses, respectively. We replicated previous epigenetic 

findings of studies evaluating in blood, lung tissue, and adipose tissue, which indicates the potential of 

saliva to study epigenetic biomarkers of smoking based on the easy access of this tissue. Further, co-

methylation analysis revealed different functional modules between SS and ND modules, for example, 

ion transmembrane transport for smoking and nicotine addiction for ND. These findings add to the 

growing literature of epigenetic changes of smoking by evaluating these using two different approaches, 

examining saliva, and studying a veteran cohort, while also revealing epigenetic changes potentially 

specific to ND.  As has been observed for genetics of several SUDs, epigenetics of nicotine use traits 

shows apparent distinction between use and dependence. Our EWAS findings identified GWS DMS for 

both SS and ND. Future studies are needed to confirm and evaluate the specificity of these findings in 

larger independent cohorts. 
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TABLES AND FIGURE LEGENDS  

Table 1. Demographic and clinical characteristics.  

 

Table 2. Top 10 SS-related DMS. The effect (E) is the difference between beta values from SS and non-

SS samples (Effect = (Meanβsmoking – Meanβnon-smoker)/Sd).  

 

Table 3. Top10 ND-related DMS. The effect (E) is the difference between beta values from ND and 

non-ND samples (Effect = (MeanβND – Meanβnon-ND)/Sd). 

 

Figure 1. Manhattan plot for EWAS analysis. A) SS model; B) ND model.  

 

Figure 2. Functional annotation of smoking-related sites. A) GO enrichment; and B) KEGG 

enrichment to the CpGs selected after Bonferroni correction. 

 

Figure 3. Smoking- and ND-related DMS. A) Venn diagram of SS- and ND-related CpGs; B) Venn 

diagram of the annotated genes to the SS- and ND-related DMS. C) protein-protein interaction SS-related 

DMS and ND-related DMS (medium-confidence rate). The green nodes represent smoking, the pink 

represents ND and blue represents the overlapping.  
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Figure 4. Co-methylation analysis to SS and ND. A) Correlated modules to SS (cor ≥ |0.07|); B) 

Correlated modules to ND (cor ≥ |0.07|); C) Enrichment rate of SS-related CpGs; D) Enrichment rate of 

ND-related CpGs. Abbreviations: rylb = royalblue; brwn = brown; mdng = midnightblue; prpl = purple; 

mgnt = magenta; trqs = turquoise; ylw = yellow; blck = black.  

 

Figure 5. Functional annotation to SS- and ND-related modules. A) GO and KEGG enrichment of 

steelblue module; B) GO and KEGG enrichment of brown module; C) GO and KEGG enrichment of pink 

module; D) GO and KEGG enrichment of grey module; E) GO and KEGG enrichment of blue module; F) 

GO enrichment of yellow module; G) GO enrichment of turquoise module.     

 

Figure 6. Violin plot. The graph shows the beta values in the y-axis and four groups on the x-axis: 1) 

Both grouped samples that are smokers and nicotine dependents; 2) ND includes only nicotine-dependent; 

3) non-smokers included the control group for both ND and smoking; and 4) Smoker included only 

samples that are current smokers. 

 

Figure 7. Nicotine addiction sites in steelblue module. The networking shows the proteins encoded by 

the annotated genes in the steelblue module. In red are the proteins associated with the nicotine addiction 

pathway. 
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Table 1.  

 Total 

 N = 1,135 

Age 

All sample 64.3 ± 12.2 

Current smokers 58.7 ± 11.5 

Non-smokers 65.0 ± 12.1 

Race 

European Americans 1135 (100%) 

Smoking status 

Current smokers 137 (12.1%) 

Non-smokers 998 (87.9%) 

Nicotine Dependence 

ND cases 236 

Alcohol dependence  

Current smokers 38 

Non-smokers 147 

Drug dependence  

Current smokers 17 

Non-smokers 52 

 

 

Table 2.  

  Literature 

CpG Name Chr Position 
Gene 

Annotation 
P-value Effect  References 

cg05575921 chr5 373378 AHRR 4.54E-83 -2.0189 B, SB, T, Wk, D 

cg21566642 chr2 233284661 ALPPL2 3.87E-50 -1.7522 S, SB, T, D 

cg25648203 chr5 395444 AHRR 8.91E-48 -0.3967 S, SB, T, D 

cg03636183 chr19 17000585 F2LR3 8.91E-48 -1.1037 S, SB, D 

cg21161138 chr5 399360 AHRR 9.05E-42 -1.5547 S, SB, Wk, D 

cg01940273 chr2 233284934 ALPPL2 2.14E-39 -1.8733 S, SB, T, D 

cg26703534 chr5 377358 AHRR 6.93E-39 -0.3132 S, D 

cg07824483 chr17 79882042 MAFG 3.79E-36 -0.0212   
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Table 3.  

  Literature 

CpG Name Chr Position 
Gene 

Annotation 
P-value Effect  References 

cg21566642 chr2 233284661 ALPPL2 5.71E-23 -0.8035 S, SB, T, D 

cg14391737 chr11 86513429 PRSS23 6.70E-21 -0.7414  D 

cg05575921 chr5 373378 AHRR 8.56E-19 -0.8692 B, SB, T, Wk, D 

cg01940273 chr2 233284934 ALPPL2 2.87E-14 -0.5798 S, SB, T, D 

cg21911711 chr19 16998668 F2RL3 3.90E-14 -0.5741 D  

cg00475490 chr11 86517110 PRSS23 1.93E-13 -0.6170 D  

cg03636183 chr19 17000585 F2RL3 5.23E-13 -0.6784 S, SB, D 

cg00045592 chr1 160714299   2.30E-12 -0.4137 D  
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