Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Ultra-High-Field MR Neuroimaging

P. Balchandani and T.P. Naidich
American Journal of Neuroradiology July 2015, 36 (7) 1204-1215; DOI: https://doi.org/10.3174/ajnr.A4180
P. Balchandani
aFrom the Translational and Molecular Imaging Institute (P.B.)
bDepartment of Radiology (P.B., T.P.N.), Icahn School of Medicine at Mount Sinai, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.P. Naidich
bDepartment of Radiology (P.B., T.P.N.), Icahn School of Medicine at Mount Sinai, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Clow H,
    2. Young IR
    . Britain's brains produce first NMR scans. New Scientist 1978;80:588
  2. 2.↵
    1. Atlas SW
    . Magnetic Resonance Imaging of the Brain and Spine. Vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2009
  3. 3.↵
    1. Kraff O,
    2. Fischer A,
    3. Nagel AM, et al
    . MRI at 7 Tesla and above: demonstrated and potential capabilities. J Magn Reson Imaging 2015;41:13–33
    CrossRefPubMed
  4. 4.↵
    1. Duyn JH
    . The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage 2012;62:1241–48
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Uğurbil K,
    2. Adriany G,
    3. Andersen P, et al
    . Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 2003;21:1263–81
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Fatterpekar GM,
    2. Naidich TP,
    3. Delman BN, et al
    . Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 2002;23:1313–21
    Abstract/FREE Full Text
  7. 7.↵
    1. Naidich TP,
    2. Duvernoy HM,
    3. Delman BN, et al
    . Vascularization of the Cerebellum and the Brain Stem. Vienna: Springer-Verlag; 2009
  8. 8.↵
    1. Duvernoy H,
    2. Cattin F,
    3. Naidich TP, et al
    . The Human Hippocampus: Functional Anatomy, Vascularization and Serial Sections with MRI. 3rd ed. Berlin: Springer-Verlag; 2005
  9. 9.↵
    1. Kerchner GA
    . Ultra-high field 7T MRI: a new tool for studying Alzheimer's disease. J Alzheimers Dis 2011;26(suppl 3):91–95
    CrossRefPubMed
  10. 10.↵
    1. Kollia K,
    2. Maderwald S,
    3. Putzki N, et al
    . First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am J Neuroradiol 2009;30:699–702
    Abstract/FREE Full Text
  11. 11.↵
    1. Thomas BP,
    2. Welch EB,
    3. Niederhauser BD, et al
    . High-resolution 7T MRI of the human hippocampus in vivo. J Magn Reson Imaging 2008;28:1266–72
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Wisse LE,
    2. Gerritsen L,
    3. Zwanenburg JJ, et al
    . Subfields of the hippocampal formation at 7 T MRI: in vivo volumetric assessment. Neuroimage 2012;61:1043–49
    CrossRefPubMed
  13. 13.↵
    1. Prudent V,
    2. Kumar A,
    3. Liu S, et al
    . Human hippocampal subfields in young adults at 7.0 T: feasibility of imaging. Radiology 2010;254:900–06
    CrossRefPubMed
  14. 14.↵
    1. Haacke EM,
    2. Mittal S,
    3. Wu Z, et al
    . Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009;30:19–30
    Abstract/FREE Full Text
  15. 15.↵
    1. Sanchez-Panchuelo RM,
    2. Besle J,
    3. Beckett A, et al
    . Within-digit functional parcellation of Brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 Tesla. J Neurosci 2012;32:15815–22
    Abstract/FREE Full Text
  16. 16.↵
    1. Duong TQ,
    2. Yacoub E,
    3. Adriany G, et al
    . Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 2003;49:1019–27
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Yacoub E,
    2. Duong TQ,
    3. Van De Moortele PF
    . Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 2003;49:655–64
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Bae KT,
    2. Park SH,
    3. Moon CH, et al
    . Dual-echo arteriovenography imaging with 7T MRI. J Magn Reson Imaging 2010;31:255–61
    CrossRefPubMed
  19. 19.↵
    1. Mayer D,
    2. Spielman DM
    . Detection of glutamate in the human brain at 3 T using optimized constant time point resolved spectroscopy. Magn Reson Med 2005;54:439–42
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Polders DL,
    2. Leemans A,
    3. Hendrikse J, et al
    . Signal to noise ratio and uncertainty in diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla. J Magn Reson Imaging 2011;33:1456–63
    CrossRefPubMed
  21. 21.↵
    1. Morelli JN,
    2. Runge VM,
    3. Feiweier T, et al
    . Evaluation of a modified Stejskal-Tanner diffusion encoding scheme, permitting a marked reduction in TE, in diffusion-weighted imaging of stroke patients at 3 T. Invest Radiol 2010;45:29–35
    CrossRefPubMed
  22. 22.↵
    1. Heidemann RM,
    2. Porter DA,
    3. Anwander A, et al
    . Diffusion imaging in humans at 7T using readout-segmented EPI and GRAPPA. Magn Reson Med 2010;64:9–14
    CrossRefPubMed
  23. 23.↵
    1. Feinberg DA,
    2. Setsompop K
    . Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 2013;229:90–100
    CrossRefPubMed
  24. 24.↵
    1. Setsompop K,
    2. Cohen-Adad J,
    3. Gagoski BA, et al
    . Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012;63:569–80
    CrossRefPubMed
  25. 25.↵
    1. Nagel AM,
    2. Bock M,
    3. Hartmann C, et al
    . The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 2011;46:539–47
    CrossRefPubMed
  26. 26.↵
    1. Nagel AM,
    2. Laun FB,
    3. Weber MA, et al
    . Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 2009;62:1565–73
    CrossRefPubMed
  27. 27.↵
    1. Nagel AM,
    2. Lehmann-Horn F,
    3. Weber MA, et al
    . In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 2014;271:585–95
    CrossRefPubMed
  28. 28.↵
    1. Thulborn KR,
    2. Davis D,
    3. Snyder J, et al
    . Sodium MR imaging of acute and subacute stroke for assessment of tissue viability. Neuroimaging Clin N Am 2005;15:639–53, xi–xii
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Boada FE,
    2. LaVerde G,
    3. Jungreis C, et al
    . Loss of cell ion homeostasis and cell viability in the brain: what sodium MRI can tell us. Curr Top Dev Biol 2005;70:77–101
    CrossRefPubMed
  30. 30.↵
    1. Qian Y,
    2. Zhao T,
    3. Wiggins GC, et al
    . Sodium imaging of human brain at 7 T with 15-channel array coil. Magn Reson Med 2012;68:1807–14
    CrossRefPubMed
  31. 31.↵
    1. Qian Y,
    2. Zhao T,
    3. Zheng H, et al
    . High-resolution sodium imaging of human brain at 7 T. Magn Reson Med 2012;68:227–33
    CrossRefPubMed
  32. 32.↵
    1. Qiao H,
    2. Zhang X,
    3. Zhu XH, et al
    . In vivo 31P MRS of human brain at high/ultrahigh fields: a quantitative comparison of NMR detection sensitivity and spectral resolution between 4 T and 7 T. Magn Reson Imaging 2006;24:1281–86
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Moser E,
    2. Stahlberg F,
    3. Ladd ME, et al
    . 7-T MR: from research to clinical applications? NMR Biomed 2012;25:695–716
    CrossRefPubMed
  34. 34.↵
    1. Trattnig S,
    2. Zbýň S,
    3. Schmitt B, et al
    . Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 2012;22:2338–46
    CrossRefPubMed
  35. 35.↵
    1. Madelin G,
    2. Kline R,
    3. Walvick R, et al
    . A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging. Sci Rep 2014;4:4763
    PubMed
  36. 36.↵
    1. Kerchner GA,
    2. Hess CP,
    3. Hammond-Rosenbluth KE, et al
    . Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI. Neurology 2010;75:1381–87
    CrossRefPubMed
  37. 37.↵
    1. Henry TR,
    2. Chupin M,
    3. Lehéricy S, et al
    . Hippocampal sclerosis in temporal lobe epilepsy: findings at 7 T. Radiology 2011;261:199–209
    CrossRefPubMed
  38. 38.↵
    1. Zeineh MM,
    2. Parvizi J,
    3. Balchandani P, et al
    . Ultra-high resolution 7.0T MRI of medial temporal lobe epilepsy. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii. April 18–24, 2009
  39. 39.↵
    1. Grabner G,
    2. Nöbauer I,
    3. Elandt K, et al
    . Longitudinal brain imaging of five malignant glioma patients treated with bevacizumab using susceptibility-weighted magnetic resonance imaging at 7 T. Magn Reson Imaging 2012;30:139–47
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Yuh WT,
    2. Christoforidis GA,
    3. Koch RM, et al
    . Clinical magnetic resonance imaging of brain tumors at ultrahigh field: a state-of-the-art review. Top Magn Reson Imaging 2006;17:53–61
    CrossRefPubMed
  41. 41.↵
    1. Eapen M,
    2. Zald DH,
    3. Gatenby JC, et al
    . Using high-resolution MR imaging at 7T to evaluate the anatomy of the midbrain dopaminergic system. AJNR Am J Neuroradiol 2011;32:688–94
    Abstract/FREE Full Text
  42. 42.↵
    1. Breyer T,
    2. Wanke I,
    3. Maderwald S, et al
    . Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results. Acad Radiol 20120;17:421–26
  43. 43.↵
    1. Madan N,
    2. Grant PE
    . New directions in clinical imaging of cortical dysplasias. Epilepsia 2009;50:9–18
  44. 44.↵
    1. Schlamann M,
    2. Maderwald S,
    3. Becker W, et al
    . Cerebral cavernous hemangiomas at 7 Tesla: initial experience. Acad Radiol 2010;17:3–6
    CrossRefPubMed
  45. 45.↵
    1. Lupo JM,
    2. Li Y,
    3. Hess CP, et al
    . Advances in ultra-high field MRI for the clinical management of patients with brain tumors. Curr Opin Neurol 2011;24:605–15
    CrossRefPubMed
  46. 46.↵
    1. Thulborn KR,
    2. Davis D,
    3. Adams H, et al
    . Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging. Magn Reson Med 1999;41:351–59
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Thulborn KR,
    2. Lu A,
    3. Atkinson IC, et al
    . Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am 2009;19:615–24
    CrossRefPubMed
  48. 48.↵
    1. Ouwerkerk R,
    2. Bleich KB,
    3. Gillen JS, et al
    . Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 2003;227:529–37
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Deistung A,
    2. Schweser F,
    3. Wiestler B, et al
    . Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PloS One 2013;8:e57924
    CrossRefPubMed
  50. 50.↵
    1. Park MJ,
    2. Kim HS,
    3. Jahng GH, et al
    . Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 2009;30:1402–08
    Abstract/FREE Full Text
  51. 51.↵
    1. Radbruch A,
    2. Wiestler B,
    3. Kramp L, et al
    . Differentiation of glioblastoma and primary CNS lymphomas using susceptibility weighted imaging. Eur J Radiol 2013;82:552–56
    CrossRefPubMed
  52. 52.↵
    1. Tallantyre EC,
    2. Morgan PS,
    3. Dixon JE, et al
    . 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging 2010;32:971–77
    CrossRefPubMed
  53. 53.↵
    1. Hammond KE,
    2. Metcalf M,
    3. Carvajal L, et al
    . Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron. Ann Neurol 2008;64:707–13
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Ge Y,
    2. Law M,
    3. Herbert J, et al
    . Prominent perivenular spaces in multiple sclerosis as a sign of perivascular inflammation in primary demyelination. AJNR Am J Neuroradiol 2005;26:2316–19
    Abstract/FREE Full Text
  55. 55.↵
    1. Ge Y,
    2. Zohrabian VM,
    3. Grossman RI
    . Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol 2008;65:812–16
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Quinn MP,
    2. Kremenchutzky M,
    3. Menon RS
    . Venocentric lesions: an MRI marker of MS? Front Neurol 2013;4:98
    PubMed
  57. 57.↵
    1. Small SA,
    2. Schobel SA,
    3. Buxton RB, et al
    . A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011;12:585–601
    CrossRefPubMed
  58. 58.↵
    1. van Rooden S,
    2. Versluis MJ,
    3. Liem MK, et al
    . Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker. Alzheimers Dement 2014;10:e19–26
    CrossRefPubMed
  59. 59.↵
    1. Drevets WC
    . Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001;11:240–49
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Wang Z,
    2. Neylan TC,
    3. Mueller SG, et al
    . Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Arch Gen Psychiatry 2010;67:296–303
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Drevets WC
    . Neuroimaging studies of mood disorders. Biol Psychiatry 2000;48:813–29
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Price JL,
    2. Drevets WC
    . Neurocircuitry of mood disorders. Neuropsychopharmacology 2010;35:192–216
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. McKinnon MC,
    2. Yucel K,
    3. Nazarov A, et al
    . A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 2009;34:41–54
    PubMedWeb of Science
  64. 64.↵
    1. Malykhin NV,
    2. Lebel RM,
    3. Coupland NJ, et al
    . In vivo quantification of hippocampal subfields using 4.7 T fast spin echo imaging. Neuroimage 2010;49:1224–30
    CrossRefPubMed
  65. 65.↵
    1. Huang Y,
    2. Coupland NJ,
    3. Lebel RM, et al
    . Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry 2013;74:62–68
    CrossRefPubMed
  66. 66.↵
    1. Liao Y,
    2. Huang X,
    3. Wu Q, et al
    . Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci 2013;38:49–56
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. Miguel-Hidalgo JJ,
    2. Baucom C,
    3. Dilley G, et al
    . Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 2000;48:861–73
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Cotter D,
    2. Mackay D,
    3. Chana G, et al
    . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002;12:386–94
    Abstract/FREE Full Text
  69. 69.↵
    1. Si X,
    2. Miguel-Hidalgo JJ,
    3. O'Dwyer G, et al
    . Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 2004;29:2088–96
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Vaughan JT,
    2. Garwood M,
    3. Collins CM, et al
    . 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001;46:24–30
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Cox EF,
    2. Gowland PA
    . Simultaneous quantification of T2 and T′2 using a combined gradient echo-spin echo sequence at ultrahigh field. Magn Reson Med 2010;64:1440–45
    CrossRefPubMed
  72. 72.↵
    1. Tannús A,
    2. Garwood M
    . Adiabatic pulses. NMR Biomed 1997;10:423–34
    CrossRefPubMed
  73. 73.↵
    1. Garwood M,
    2. DelaBarre L
    . The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 2001;153:155–77
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Balchandani P,
    2. Glover G,
    3. Pauly J, et al
    . Improved slice-selective adiabatic excitation. Magn Reson Med 2014;71:75–82
    CrossRefPubMed
  75. 75.↵
    1. Balchandani P,
    2. Pauly J,
    3. Spielman D
    . Designing adiabatic radio frequency pulses using the Shinnar-Le Roux algorithm. Magn Reson Med 2010;64:843–51
    CrossRefPubMed
  76. 76.↵
    1. Conolly S,
    2. Pauly J,
    3. Nishimura D, et al
    . Two-dimensional selective adiabatic pulses. Magn Reson Med 1992;24:302–13
    CrossRefPubMed
  77. 77.↵
    1. Balchandani P,
    2. Pauly J,
    3. Spielman D
    . Interleaved narrow-band PRESS sequence with adiabatic spatial-spectral refocusing pulses for 1H MRSI at 7T. Magn Reson Med 2008;59:973–79
    CrossRefPubMed
  78. 78.↵
    1. Balchandani P,
    2. Spielman D
    . Fat suppression for 1H MRSI at 7T using spectrally selective adiabatic inversion recovery. Magn Reson Med 2008;59:980–88
    CrossRefPubMed
  79. 79.↵
    1. Balchandani P,
    2. Qiu D
    . Semi-adiabatic Shinnar-Le Roux pulses and their application to diffusion tensor imaging of humans at 7T. Magn Reson Imaging 2014;32:804–12
    CrossRefPubMed
  80. 80.↵
    1. Scheenen TW,
    2. Heerschap A,
    3. Klomp DW
    . Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses. MAGMA 2008;21:95–101
    CrossRefPubMed
  81. 81.↵
    1. van Kalleveen IM,
    2. Koning W,
    3. Boer VO, et al
    . Adiabatic turbo spin echo in human applications at 7 T. Magn Reson Med 2012;68:580–87
    CrossRefPubMed
  82. 82.↵
    1. Moore J,
    2. Jankiewicz M,
    3. Zeng H, et al
    . Composite RF pulses for B1+-insensitive volume excitation at 7 Tesla. J Magn Reson 2010;205:50–62
    CrossRefPubMed
  83. 83.↵
    1. Boer VO,
    2. Siero JC,
    3. Hoogduin H, et al
    . High-field MRS of the human brain at short TE and TR. NMR Biomed 2011;24:1081–88
    CrossRefPubMed
  84. 84.↵
    1. Sacolick LI,
    2. Wiesinger F,
    3. Hancu I, et al
    . B1 mapping by Bloch-Siegert shift. Magn Reson Med 2010;63:1315–22
    CrossRefPubMed
  85. 85.↵
    1. Khalighi MM,
    2. Rutt BK,
    3. Kerr AB
    . Adiabatic RF pulse design for Bloch-Siegert B1+ mapping. Magn Reson Med 2013;70:829–35
    CrossRefPubMed
  86. 86.↵
    1. Saekho S,
    2. Yip CY,
    3. Noll DC, et al
    . Fast-kz three-dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity. Magn Reson Med 2006;55:719–24
    CrossRefPubMed
  87. 87.↵
    1. Cloos MA,
    2. Boulant N,
    3. Luong M, et al
    . kT-points: short three-dimensional tailored RF pulses for flip-angle homogenization over an extended volume. Magn Reson Med 2012;67:72–80
    CrossRefPubMed
  88. 88.↵
    1. Saranathan M,
    2. Tourdias T,
    3. Kerr AB, et al
    . Optimization of magnetization-prepared 3-dimensional fluid attenuated inversion recovery imaging for lesion detection at 7 T. Invest Radiol 2014;49:290–98
    CrossRefPubMed
  89. 89.↵
    1. Zhu Y
    . Parallel excitation with an array of transmit coils. Magn Reson Med 2004;51:775–84
    CrossRefPubMed
  90. 90.↵
    1. Grissom W,
    2. Yip CY,
    3. Zhang Z, et al
    . Spatial domain method for the design of RF pulses in multicoil parallel excitation. Magn Reson Med 2006;56;620–69
    CrossRefPubMed
  91. 91.↵
    1. Katscher U,
    2. Börnert P,
    3. Leussler C, et al
    . Transmit SENSE. Magn Reson Med 2003;49:144–50
    CrossRefPubMed
  92. 92.↵
    1. Wang L,
    2. Wu Y,
    3. Chang G, et al
    . Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 2009;30:606–14
    CrossRefPubMed
  93. 93.↵
    1. Staroswiecki E,
    2. Bangerter NK,
    3. Gurney PT, et al
    . In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging 2010;32:446–51
    CrossRefPubMed
  94. 94.↵
    1. Chakeres DW,
    2. Kangarlu A,
    3. Boudoulas H, et al
    . Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements. J Magn Reson Imaging 2003;18:346–52
    CrossRefPubMed
  95. 95.↵
    1. Robitaille P-M,
    2. Berliner LJ
    1. Robitaille P-M
    . Ultra high field magnetic resonance imaging: a historical perspective. In: Robitaille P-M, Berliner LJ, eds. Ultra High Field Magnetic Resonance Imaging. New York: Springer; 2006;26:1–17
    CrossRef
  96. 96.↵
    1. Shellock FG
    . MRISAFETY.com. . www.mrisafety.com. Accessed September 20, 2014.
  97. 97.
    1. Peters AM,
    2. Brookes MJ,
    3. Hoogenraad FG, et al
    . T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 2007;25:748–53
    CrossRefPubMed
  98. 98.
    1. Uludağ K,
    2. Müller-Bierl B,
    3. Uğurbil K
    . An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 2009;48:150–65
    CrossRefPubMedWeb of Science
  99. 99.
    1. Solomon I
    . Relaxation processes in a system of two spins. Phys Rev 1955;99:559
    CrossRefWeb of Science
  100. 100.
    1. Bartha R,
    2. Michaeli S,
    3. Merkle H, et al
    . In vivo 1H2O T2+ measurement in the human occipital lobe at 4T and 7T by Carr-Purcell MRI: detection of microscopic susceptibility contrast. Magn Reson Med 2002;47:742–50
    CrossRefPubMed
  101. 101.
    1. Michaeli S,
    2. Garwood M,
    3. Zhu XH, et al
    . Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med 2002;47:629–33
    CrossRefPubMed
  102. 102.↵
    1. Van Leemput K,
    2. Bakkour A,
    3. Benner T, et al
    . Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 2009;19:549–57
    CrossRefPubMedWeb of Science
  103. 103.↵
    1. Gu M,
    2. Zahr NM,
    3. Spielman DM, et al
    . Quantification of glutamate and glutamine using constant-time point-resolved spectroscopy at 3 T. NMR Biomed 2013;26:164–72
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (7)
American Journal of Neuroradiology
Vol. 36, Issue 7
1 Jul 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ultra-High-Field MR Neuroimaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
P. Balchandani, T.P. Naidich
Ultra-High-Field MR Neuroimaging
American Journal of Neuroradiology Jul 2015, 36 (7) 1204-1215; DOI: 10.3174/ajnr.A4180

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Ultra-High-Field MR Neuroimaging
P. Balchandani, T.P. Naidich
American Journal of Neuroradiology Jul 2015, 36 (7) 1204-1215; DOI: 10.3174/ajnr.A4180
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • High-Field 7T MRI in a drug-resistant paediatric epilepsy cohort: image comparison and radiological outcomes
  • MULTIMODAL GRADIENTS UNIFY LOCAL AND GLOBAL CORTICAL ORGANIZATION
  • Phenotyping Superagers Using Resting-State fMRI
  • Application of 7T MRS to High-Grade Gliomas
  • Cortical Depth-Dependent Modeling of Visual Hemodynamic Responses
  • Emerging Use of Ultra-High-Field 7T MRI in the Study of Intracranial Vascularity: State of the Field and Future Directions
  • Ultra-high field MRI reveals mood-related circuit disturbances in depression: A comparison between 3-Tesla and 7-Tesla
  • Investigating resting-state functional connectivity in the cervical spinal cord at 3T
  • 7T MRI for neurodegenerative dementias in vivo: a systematic review of the literature
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire