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ORIGINAL RESEARCH
INTERVENTIONAL

Outcome Differences between Intra-Arterial Iso- and Low-
Osmolality Iodinated Radiographic Contrast Media in the

Interventional Management of Stroke III Trial
T.A. Tomsick, L.D. Foster, D.S. Liebeskind, X M.D. Hill, J. Carrozella, M. Goyal, R. von Kummer, A.M. Demchuk, I. Dzialowski, V. Puetz,

T. Jovin, H. Morales, Y.Y. Palesch, J. Broderick, P. Khatri, and S.D. Yeatts, for the IMS III Investigators

ABSTRACT

BACKGROUND AND PURPOSE: Intracarotid arterial infusion of nonionic, low-osmolal iohexol contrast medium has been associated with
increased intracranial hemorrhage in a rat middle cerebral artery occlusion model compared with saline infusion. Iso-osmolal iodixanol (290
mOsm/kg H2O) infusion demonstrated smaller infarcts and less intracranial hemorrhage compared with low-osmolal iopamidol and saline.
No studies comparing iodinated radiographic contrast media in human stroke have been performed, to our knowledge. We hypothesized
that low-osmolal contrast media may be associated with worse outcomes compared with iodixanol in the Interventional Management of
Stroke III Trial (IMS III).

MATERIALS AND METHODS: We reviewed prospective iodinated radiographic contrast media data for 133 M1 occlusions treated with
endovascular therapy. We compared 5 prespecified efficacy and safety end points (mRS 0 –2 outcome, modified TICI 2b-3 reperfusion,
asymptomatic and symptomatic intracranial hemorrhage, and mortality) between those receiving iodixanol (n � 31) or low-osmolal
contrast media (n � 102). Variables imbalanced between iodinated radiographic contrast media types or associated with outcome were
considered potential covariates for the adjusted models. In addition to the iodinated radiographic contrast media type, final covariates
were those selected by using the stepwise method in a logistic regression model. Adjusted relative risks were then estimated by using a
log-link regression model.

RESULTS: Of baseline or endovascular therapy variables potentially linked to outcome, prior antiplatelet agent use was more common
and microcatheter iodinated radiographic contrast media injections were fewer with iodixanol. Relative risk point estimates are in favor of
iodixanol for the 5 prespecified end points with M1 occlusion. The percentage of risk differences are numerically greater for microcatheter
injections with iodixanol.

CONCLUSIONS: While data favoring the use of iso-osmolal iodixanol for reperfusion of M1 occlusion following IV rtPA are inconclusive,
potential pathophysiologic mechanisms suggesting clinical benefit warrant further investigation.

ABBREVIATIONS: EVT � endovascular therapy; IA � intra-arterial; ICH � intracranial hemorrhage; IMS III � Interventional Management of Stroke III Trial; IRCM � iodinated
radiographic contrast media; LOCM � low-osmolal contrast media; MCI � microcatheter injection; mTICI � modified TICI; SICH � symptomatic intracranial hemorrhage

Iodinated radiographic contrast media (IRCM) have variable

antithrombotic, fibrinolytic, cytotoxic, hydrostatic, and vasoac-

tive effects. In a rat middle cerebral artery reperfusion model,

intracarotid arterial infusion of the nonionic low-osmolal con-

trast medium (LOCM) iohexol (672 mOsm/kg. H2O) increased

intracerebral hemorrhage (ICH) compared with saline infusion.1

Iso-osmolal iodixanol (290 mOsm/kg H2O) infusion led to
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smaller infarcts and less ICH compared with both low-osmolal

iopamidol and saline in a similar model.2 Dzialowski et al3 re-

ported reduced odds of favorable outcome in patients receiving intrave-

nous IRCM for CT angiography before IV thrombolysis.

Practical differences exist as well: IRCM differ in cost (ie, io-

dixanol is more expensive than LOCM) and ease of use (ie, iodix-

anol is more viscous and more difficult to inject). No study has

prospectively and comprehensively compared outcomes accord-

ing to intra-arterial (IA) IRCM use in endovascular therapy

(EVT) of ischemic stroke in humans, to our knowledge. We re-

port the efficacy and safety outcomes for subjects with EVT for

MCA M1 occlusion in the Interventional Management of Stroke

III Trial (IMS III) according to IRCM type and osmolality.

MATERIALS AND METHODS
Study eligibility/exclusion criteria, methods, and results have

been previously reported.4,5 Six hundred fifty-six subjects were

randomized to either IV rtPA or IV rtPA plus endovascular ther-

apy. CT angiography or MR angiography was not required but

was allowed in centers where either was established as a local

standard of evaluation and care. Five EVT methods were ap-

proved for use during the course of the trial (thrombolysis via

standard microcatheter/guidewire rtPA infusion or the EkoSonic

Endovascular System [EKOS, Bothell, Washington])6; clot re-

moval via the Merci system (Concentric Medical, Mountain

View, California),7,8 Penumbra System (Penumbra, Alameda,

California),9 or Solitaire FR Retriever (Covidien, Irvine, Califor-

nia).10 Intra-arterial rtPA infusion was also allowed as an adjuvant

to mechanical thrombectomy. A 2000-U bolus of heparin was

required per protocol for endovascular treatment procedures, fol-

lowed by 500-U/h IV infusion.

The primary outcome measure was a modified Rankin Scale

score of 0 –2 at 90 days. Secondary EVT efficacy end points in-

cluded revascularization, as measured by Modified Thrombolysis

in Cerebral Infarction (mTICI) 2–3 and mTICI 2b–3 as ascribed by

consensus of the Angiography Core Laboratory members (T.A.T.,

D.S.L.). Primary safety end points were 90-day mortality and symp-

tomatic intracranial hemorrhage (SICH) within 30 hours of IV rtPA

initiation, defined as an ICH temporally related to a decline in neu-

rologic status and new or worsening neu-

rologic symptoms in the judgment of the

clinical investigator that may warrant

medical intervention. Asymptomatic ICH

within 30 hours of IV rtPA initiation was a

secondary safety end point.

Investigators prospectively entered

data on the IRCM compound type and

volume for EVT subjects. The percent-

age of iodine concentration and/or spe-

cific IRCM osmolality was not consis-

tently recorded. Clinical efficacy and

safety end points were analyzed for sub-

jects with EVT for M1 occlusion (defined

as occlusion of the MCA trunk with 100%

MCA distribution at risk, exclusive of a

typical anterior temporal artery distribu-

tion), according to EVT use of either iso-

osmolal iodixanol or any LOCM.

The 2 IRCM groups were initially compared for differences in

prescribed outcomes that might warrant further comparative

analysis. Baseline risk factors with a potential effect on clinical

efficacy or safety outcome in revascularization therapy were then

compared for balance between the 2 groups. Baseline variables

imbalanced between IRCM types or associated with outcome

(P � .1) were considered potential covariates for the adjusted

models. Imbalance/association was measured by using the �2,

Fisher, or Wilcoxon 2-sample test, as appropriate. The linearity in

the logit assumption was checked for all continuous potential

covariates. In addition to IRCM type, final covariates were those

selected by using the stepwise method in a logistic regression

model. Model fit was assessed via the Hosmer-Lemeshow test. For

ease of interpretation, adjusted relative risks were then estimated

by using a log-link regression model.

RESULTS
Thirty-one M1 occlusions were treated with iodixanol use during

EVT, and 102, with LOCM of 4 different types. Differences in

baseline characteristics known to be relevant in stroke efficacy or

safety outcome with revascularization therapy and other relevant

treatment-related variables are included in Tables 1 and 2.

Table 3 details relative and absolute efficacy and safety differ-

ences between the 2 IRCM groups.

Separate adjusted models were fit for each outcome (except

SICH, due to an insufficient event rate). Variables imbalanced

between IRCM types or associated with outcome (P � .1) were

considered potential covariates for the adjusted models,
including antiplatelet medication (67.7% iodixanol versus 44.1%,
P � .0212), history of coronary artery disease (35.5% iodixanol ver-

sus 19.6%, P � .0671), age (iodixanol median, 73 versus 68.5 years,

P � .0698), and microcatheter injection (MCI) (median, 1 iodixanol

versus 2 LOCM; P � .03), varied according to IRCM type.

Adjusted relative risk point estimates were in favor of the iodix-

anol group for all outcomes (Table 4). No significant differences for

specified outcomes were identified. Conclusions remained the same

after sensitivity analyses were performed for asymptomatic ICH and

Table 1: Baseline clinical characteristics considered for adjusted analysis
Iodixanol LOCMa P Value

Ageb (median) (range) (yr) 73 (47–83) 68.5 (24–82) .07
Baseline glucoseb (mmol/L) (median) (range) 6.9 (5.2–18.3) 6.6 (3.8–21.5) .33
Diabetes (%) 19.4 17.7 .83
Baseline SBP (mm Hg)b (median) (range) 145.5 (116–185) 146 (102–194) .82
History of high BP (%) 74.2 73.5 .94
Atrial fibrillation (%) 48.4 35.3 .19
Coronary artery disease (%) 35.5 19.6 .07
ASPECTS 8–10b (%) 41.9 49.0 .49
Baseline NIHSSb

�20% 35.5 37.3 .86
�19% 64.5 62.8

Historical mRS (No. Sx)b (%) 90.3 86.3 .46
Antiplatelet agents (%) 67.7 44.1 .02
Presumptive stroke location right (%) 51.6 49.0 .80
Baseline CTA/MRA (%) 61.3 51.0 .31

Note:—Sx indicates symptoms; SBP, systolic blood pressure; BP, blood pressure.
a Four LOCM (mOsm/Kg H2O): iohexol (672), iopamidol (616), ioversol (651), iopromide (607).11
b Baseline factors relevant to prespecified outcomes.
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mRS 0–2 outcome models to include adjustments for variables

known to be associated with these outcomes.

As a known variable affecting procedure outcome that was

unequally distributed, MCIs were further analyzed. In bivariate

analysis of MCI number compared with outcomes independent

of the IRCM group, significant relationships were identified.

Fewer MCIs were associated with greater mRS 0 –2 outcome (P �

.029) and better reperfusion (P � .003). MCI remained a signifi-

cant predictor of reperfusion when adjusted for key baseline and

treatment-related variables. MCIs were not significant predictors

of mRS 0 –2 or mortality when adjusted for other key variables.

Ninety-one of 133 (68.5%) subjects had MCIs, including 16/31

(52%) with iodixanol and 75/102 (73.5%) with LOCM (P �

.022). With MCI use, percentage risk differences in the measured

end points were in favor of iodixanol for all end points. MCI use

did not differ among device methods.

DISCUSSION
The potential risks and safety of IRCM use in the setting of acute

stroke in humans have been discussed for a long time, with the

advantages in diagnosis and treatment assumed to outweigh any

theoretic, unproven risks.11,12 However, with effective ischemic

stroke therapies now available, investigation and deeper under-

standing of the theoretic effects of different media may assume

greater practical significance.

Our analyses here disclose potential differences in out-

comes from stroke treatment arising from the use of IA iso-

osmolal iodixanol versus LOCM agents for EVT following IV

rtPA in the setting of microcatheter use. Raw, unadjusted, and

adjusted directions of effect were in favor of iodixanol for all

prespecified efficacy and safety outcomes. Relatively greater

age, blood glucose, percentage of atrial fibrillation, and CT

hypoattenuation (as manifested by a lower ASPECT score),

followed by relatively later IV rtPA administration, longer time

to artery puncture, and more thrombolysis-only procedures,

were present in the iodixanol group. Prior antiplatelet use, the

only baseline variable significantly greater with iodixanol, has

been associated with a small excess of SICH in systemic throm-

bolytic therapy.13 While these factors should disadvantage io-

dixanol regarding mRS 0 –2 outcome and ICH rate, point esti-

mates from adjusted analyses remain in favor of iodixanol.

MCIs were less common in the iodixanol group. Procedures

with no MCI showed no benefit to iodixanol use. When MCIs

were analyzed according to IRCM use, however, a greater rel-

ative benefit was suggested with MCI iodixanol use compared

with LOCM for all end points.

IRCM effects may be collectively related to their ionic or non-

ionic properties, iso-osmolality, and their molecular structure

and size as monomers or dimers. Osmolality is, in part, related to

iodine concentration, generally recommended at 300-mg per cent

for cerebral use. Multiple iodine concentrations of the same

IRCM compound type were used in IMS III. Consensus that the

use of ionic high-osmolal IRCM was associated with worse out-

come after infarction in humans and animals has eliminated their

use in this setting.11,12,14 LOCM non-

ionic media may contribute to ICH in

animals.1 Differences in ICH number

and infarct area effects might also exist

between injection of iso-osmolal and

LOCM.2 It is reasonable to further hy-

pothesize, then, that nonionic iso-os-

molal IRCM may have a less harmful net

effect in the setting of acute stroke than

nonionic LOCM. No comparative data

in IV or IA IRCM use in human stroke

are available to refute that hypothesis.3

Mechanisms contributing to poten-

tial differences in IRCM efficacy and

safety have been extensively analyzed

under a variety of experimental condi-

tions in vitro and in animal models, in-

cluding coagulation, direct cytotoxic,

neurotoxic, osmotic, hydrostatic, and

direct vasomotor effects.

Table 2: Relevant treatment-related variables considered for adjusted analysis
Iodixanol LOCMa P Value

Time to IV therapy (min) (median) 124 115 .25
Onset to puncture (min) (median) 215 205 .29
Proximal M1 (vs distal) (%) 45.2 52.0 .51
Thrombolysis only (%) 41.9 36.2 .57
No. microcatheter injections (median) 1 2 .03
Heparin volume (U) (median) 3185 2986.8 .59
New emboli (%) 16.1 11.8 .54
IRCM volume (mL) (median) 85 64 .34
Infarct volume 24 hr (mL)a (median) 61.0 50.2 .23

a Four LOCM (mOsm/Kg H2O): iohexol (672), iopamidol (616), ioversol (651), iopromide (607).11

Table 3: Efficacy and safety outcomes according to iodixanol versus LOCM use
Iodixanol
(No.) (%)

LOCM
(No.) (%)

Absolute % Risk
Difference

Relative %
Difference

N 31 102 – –
mTICI 2b/3 16 (51.6) 42 (41.2) 10.4 20.2
mRS 0–2 11 (35.5) 31 (30.4) 5.1 14.4
AICH 9 (29.0) 42 (41.2) �12.1 �29.6
SICH 2 (6.5) 9 (8.8) �2.4 �26.1
Mortality 6 (19.4) 26 (25.5) �6.1 �23.9

Note:—AICH indicates asymptomatic ICH.

Table 4: Relative risk of specified outcomes for iodixanol versus LOCM
Unadjusted Adjusted

RR 99% CI RR 99% CI
mRS 0–2 1.1675 0.5606 2.4314 1.2002 0.6123 2.3528
mTICI 2b/3 1.2535 0.7291 2.1549 1.2829 0.7888 2.0864
AICH 0.7051 0.3216 1.5457 0.6596 0.3051 1.4260
SICH 0.7312 0.1048 5.1038 NA
Mortality 0.7593 0.2683 2.1486 0.7538 0.2767 2.0537

Note:—RR indicates relative risk; AICH, asymptomatic ICH.
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Coagulation

Platelet Activity Effects. Direct activation of platelets (ie, degran-

ulation and release of the procoagulant content of attenuated

bodies and �-granules) is induced in vitro by nonionic LOCM,

with no activation by LOCM ionic (eg, ioxaglate) and nonionic

dimeric iodixanol.15-17 Nonionic iohexol and iodixanol are

equivalent in reducing platelet aggregation.18,19 In vitro platelet

activation by thrombin is inhibited by ionic LOCM, whereas non-

ionic monomeric LOCM and dimeric iodixanol did not affect it.20

Prior antiplatelet use of aspirin conferred neither clinical nor rep-

erfusion benefit nor hemorrhagic risk in conjunction with IV

rtPA in the National Institute of Neurological Disorders and

Stroke trial, and none has previously been demonstrated in

EVT.21,22 While antiplatelet use in IMS III tended to be associated

with increased ICH overall, its use was more common in the io-

dixanol group, yet ICH was decreased with iodixanol use.

Thrombin Activity Effects. The heparin dose used during EVT

did not differ between the 2 treatment groups. Nonionic agents

cause less direct inhibition of thrombin production compared

with ionic IRCM, acting after the generation of thrombin at the

step of fibrin monomer polymerization.23 Both ionic and non-

ionic agents can prolong clotting time and may exaggerate the

effects of anticoagulant and antiplatelet drugs.24 Nonionic LOCM

iopamidol and iohexol have an anticoagulant effect but permit

thrombin generation in vitro.25-27 The anticoagulant effect of io-

dixanol has been shown to be significantly less than that of io-

hexol.16 LOCM iopamidol has been found to have a greater

thrombotic effect than iodixanol.28 One of 3 clinical studies of

coronary intervention found a significant decrease in abrupt ves-

sel occlusions with iodixanol, particularly in the absence of glyco-

protein IIb/IIIa blockers, while the other 2 found no differences in

major cardiac events.29 No differences in mortality or length of

stay were found among 107,994 coronary angiographies or inter-

ventions with 3 different LOCM.29 Outcome differences in IRCM

effects between procedures performed for acute occlusive EVT

have been suggested for coronary intervention yet have also been

inconclusive due to limited power.30

Fibrinolytic Effects. IRCM delay and impede fibrinolysis by re-

combinant tissue-type plasminogen activator. In vitro studies

have shown that while iohexol delays the onset of lysis induced by

all lytic agents, ioxaglate delayed the onset of lysis by rtPA and

urokinase but not by streptokinase.31 In vivo studies in dogs have

shown that alteplase-induced fibrinolysis could be inhibited by

iohexol. Reocclusion of coronary arteries following fibrinolysis

was more common after IRCM administration, despite concom-

itant aspirin and heparin therapy.32 Iohexol has been demon-

strated to increase plasma levels of tPA plasminogen activator

inhibitor type 1 in patients undergoing pulmonary angiogra-

phy.33 In an in vitro model of the sonographic effect on fibrino-

lysis, very limited data suggested that iodixanol may diminish the

rate of sonography-assisted thrombus dissolution.34 While a

meta-analysis investigating the fibrinolysis effect of IRCM of any

type or route of administration (IV or IA) has suggested no dif-

ference in recanalization rates,35 the wide range of fibrinolytic

practices makes the study only marginally relevant to the potential

effects of individual IRCM types with EVT of M1 occlusion in

IMS III. Dzialowski et al3 reported reduced odds of favorable out-

come in patients receiving IV contrast for CT angiography before

IV thrombolysis.

Cytotoxic and Osmotic Effects. Cytotoxic effects on endothelial

cells may contribute to thrombosis. While no clinically significant

differences among nonionic IRCM are confirmed, buckling of

endothelial cells with alteration of function is less conspicuous

with iodixanol.36,37 IRCM can also induce apoptosis of endothe-

lial cells in vitro.38 Significant in vitro differences between IRCM

on red blood cell count morphology may also contribute to

thrombosis in vivo, with iodixanol retaining a greater percentage

of normal morphology compared with LOCM agents.39

Both IV and IA IRCM injection increase the permeability of

the blood-brain barrier under normal conditions in animals.40-42

Osmolality plays an important role in the BBB dysfunction, par-

ticularly after ischemic injury, even contributing to larger infarcts

with hyperosmolal compared with iso-osmolal IRCM infusion.12

Hypertension, which may reflexly occur with arterial occlusion,

potentiates the effect of these BBB effects.43 In humans, IRCM

identification in the brain or subarachnoid space after aneurysm

coiling procedures by using large IRCM volumes is usually

asymptomatic.44,45 Theoretically, it is possible that large IV or IA

doses of IRCM (as used in nonischemia EVT procedures) may

contribute to exaggerated BBB opening, edema, IRCM deposi-

tion, and ICH in ischemic stroke EVT as well.46,47

Following acute ischemia in rats, early leakage of MR imaging

contrast agents across the BBB has been shown to predict and

co-localize to subsequent hemorrhagic transformation.48,49 In

humans, contrast media deposition during MR imaging and CT

perfusion in the acute ischemic setting is also a marker of subse-

quent hemorrhagic transformation.50-52 Depositions confirmed

on both post-EVT CT and MR imaging have also co-localized to

MR imaging contrast enhancement and hemorrhagic transfor-

mation.53 MR imaging contrast deposition during routine gado-

linium-enhanced MR imaging following IV rtPA occurs in ap-

proximately 20% of infarcts and is predictive of subsequent

ICH.54,55 Lummul et al56 connected CT-hyperattenuated cerebral

lesions with IRCM deposition following both CTA/CTP and sub-

sequent EVT. The high incidence of hyperattenuated lesions and

the percentage of secondary ICH suggest that they both may be

IRCM-volume related. It remains unclear whether contrast media

deposition is both effect and cause, with IRCM leaking across the

BBB contributing to additive cytotoxic effects on the interstitium

and neuronal elements. However, in IMS III, the median iodix-

anol volume was numerically higher than that for LOCM, sug-

gesting that either worse measured outcome differences were not

merely LOCM-volume-related or greater iodixanol volume ex-

erted a protective effect.

Complex mechanisms beyond osmolality-related toxicity and

dysfunction may be operative.57,58 Heinrich et al59 compared the

cytotoxic effects of dimeric iso-osmolal IRCM (iodixanol, iotro-

lan) and iso-osmolal formulations of monomeric IRCM on renal

tubular cells in vitro and found that dimeric IRCM have stronger

cytotoxic effects, postulating a mechanism beyond osmolality

alone. Molecular chemotoxicity decreases as the number of car-

boxyl groups decreases and the number of hydroxyl groups in-

creases, and IRCM with no carboxyl groups and a number of
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hydroxyl groups evenly distributed around the main molecule

have reduced neurotoxicity.60,61 Iodixanol has an increased num-

ber of hydroxyl groups (n � 9) compared with LOCM (eg, 5 for

iopamidol), but more carboxy groups (6 versus 3), theoretically

disadvantageous in human use. Increasing the number of hy-

droxyl groups also increases solubility, thus reducing the ten-

dency to bind to tissues and proteins, which may then lead to

inhibition of enzyme systems, including acetylcholinesterase.62,63

The net vector for the benefit of the complex structural arrange-

ment of iodixanol is uncertain.

Hyperosmolality-toxicity injury may be offset, in part, by a

beneficial osmotic tonicity effect of intravascular IRCM on the

intravascular and extracellular spaces based on molecular size.

Dimeric iodixanol (1000 Da) is approximately twice as large as

monomeric iopamidol (550 Da). Five times larger than mannitol

(182 Da), iodixanol may not only be less able to traverse early

damage to the BBB to exert adverse direct toxic or osmotic effects

beyond endothelial cell tight junctions in the basal lamina or in

the extracellular space, but it also may offer a microvascular os-

motic advantage.64 Conversely, monomeric LOCM may ulti-

mately more easily traverse the damaged membrane to promote

increased edema by an osmotic tissue effect. While conflicting

evidence regarding increased neurotoxicity once the IRCM has

crossed the BBB in animals and humans exists, 12,14,65-68 an addi-

tive effect of IRCM traversing the damaged BBB into the intersti-

tium, affecting cellular and neural elements, contributing to

greater ICH potential and neural injury, is hypothesized.

Hydrostatic Effects. Viscosity differences (iodixanol 11.8 cP at

37° versus iopamidol 4.7 cP) may simultaneously lead to a re-

duced hydrostatic effect of viscous, dimeric iodixanol, with pro-

longed vascular retention at the injured BBB, and may contribute

to the reduced infarct edema volume measured in rats.69 Hydro-

lysis of iodixanol in vitro can produce a derivative of propylene

glycol (2,3-dihydroxy-1-propylamine HOCH2-CH [OH]-CH2-

NH2), which, when injected intra-arterially in a rat ischemia

model, has been found to decrease BBB dysfunction by a “sealing”

effect, with subsequent decreased permeability and infarct size.70

Similar hydrostatic IA “sealing” effects on the BBB could even be

possible under certain conditions.71,72 Molecule size alone may

present a relative microvascular seal, delaying not only early ionic

edema but also diminishing later vasogenic edema associated with

hemorrhagic transformation.

Relatively reduced asymptomatic ICH and SICH with iodix-

anol in IMS III, despite the possibility of better mTICI reperfusion

and larger infarct volume, contradict the theoretic construct of

reperfusion ICH effects, suggesting that iodixanol may somehow

offer an unrelated protective effect against ICH.73 The mecha-

nism of hemorrhagic transformation, though linked to reperfu-

sion, infarct volume, and edema, might have a separate and dif-

ferent pathophysiologic pathway after reperfusion of acute

ischemic stroke in humans and animals.74,75 Infarct size and ICH

differences are greater in rats with temporary-versus-permanent

MCA occlusion.76 Reduced infarct edema volume as a measure of

reduced reperfusion injury with both LOCM-versus-saline reper-

fusion and viscous iso-osmolal-versus-less viscous LOCM has

been found in rats.1,2 In humans, improved mTICI reperfusion

following ischemia would be anticipated to increase levels of re-

active oxygen species, including superoxide radical and nitric ox-

ide.77,78 Oxidative radicals trigger activation of metalloprotei-

nases, which, in turn, potentiate injury to microvasculature and

neural cells.79,80 However, IRCM may decrease the endothelial

production of nitric oxide by reducing the activity of the enzyme

nitric oxide synthase, which is responsible for the endogenous

synthesis of this vasodilator.81,82 Variable vasoactive effects of

IRCM have been identified in the renal vasculature, where both

iopamidol and iodixanol caused a brief initial vasodilation, fol-

lowed by increased resistance with iopamidol, but not iodix-

anol.83 Increased CO2 release from the rat hippocampus incu-

bated with the iso-osmolar dimers iotrolan and iodixanol has

been measured, a potentiator of vasodilation. Increased CO2 pro-

duction could involve an effect of the glucose metabolic pathway

or be indirect via an unspecified mechanism that increases cell

glucose use.84 Potential glucose metabolism effects of IRCM have

been identified in vitro and in vivo for metrizamide, but not for

iohexol or iopamidol. Clinically significant vasomotor differences

in the cerebral vasculature in humans are unknown.

Miscellaneous Effects. IRCM have been reported to adversely af-

fect oxyhemoglobin dissociation.85 Decreased pH or increased

temperature in the hypoxic brain tissue can cause changes in the

physicochemical properties of IRCM as well. Increased BBB dis-

ruption has been demonstrated in rabbits with IA injection of

higher iodine-concentration IRCM (300 versus 150 mg/mL), at a

lower temperature (24°C versus 37°C), during a briefer time (1

versus 30 seconds).86 The role that these miscellaneous effects

might play in EVT can only be theorized.

ICH has been previously linked to microcatheter IRCM injec-

tions during EVT.67,87 Microcatheter IRCM injections push sa-

line ahead at higher initial pressures and flow rates, which de-

crease as the catheter becomes IRCM-filled (D. Hansmann,

EKOS, unpublished data, 2014). The viscosity of iodixanol may

diminish such distal catheter pressure and flow effects compared

with LOCM, and it offers a relative safety margin reflected in

lower ICH and SICH rates. Microcatheter IRCM injection deliv-

ers a higher concentration of IRCM locally within the occlusion,

which then may wash out more slowly from patent or partially

obstructed microvasculature, thereby amplifying protective hy-

drostatic microvascular iodixanol effects. Local microcatheter sa-

line injections, used to clear catheters of IRCM, with pressure and

flow increasing through the act of clearance, may be equally re-

sponsible for any untoward effects of IRCM MCI.

There are limitations to our results, analysis, and hypotheses.

First, the importance of an unrecognized baseline or treatment

factor may be underestimated. Prior antiplatelet and iodixanol

use may favor revascularization and clinical outcomes in a way

not previously demonstrated in IV or EVT revascularization stud-

ies. The specifics of recording IA injections of IRCM in a revascu-

larization procedure leave room for wide ranges of practice vari-

ables that theoretically may have a secondary effect on outcome.

Injections such as hand or power, intracranial microcatheter or

cervical guide, saline-diluted or full-strength, high- or low-pres-

sure, large- or low-volume may all be performed during the same

procedure. Differences among operators that almost assuredly

exist in all these variables may become relatively reproducible
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within a the practice of a single operator or center. Site variables,

then, might affect outcomes.

LOCM use following IV rtPA may not have the same effects by

comparison in the absence of IV rtPA. While the impact of any

proved, actionable differences between IRCM may be diminished

in the current EVT atmosphere of shorter procedures with re-

duced IRCM volume use with application of devices not studied

in IMS III, the use of MCI with LOCM may still prove to be a

relevant risk factor.

While this is an analysis of a homogeneous population of M1

occlusion, new emboli during treatment in previously uninvolved

vessels occurred in 12.8% of subjects with M1 occlusion in IMS

III, numerically more common in the iodixanol group (16.1%

versus 11.8%). An estimated 13% difference in mRS 0 –2 out-

comes between subjects with and without new emboli in IMS III

has been reported.4 While new emboli may have contributed to

nonsignificantly larger infarcts in the iodixanol group, it remains

unclear how larger infarcts relate to better clinical outcome.

CONCLUSIONS
A potential protective effect of iodixanol use in the EVT of M1

occlusion is proposed in IMS III, but perhaps only in the setting of

MCI. Iodixanol contributes less endothelial cytotoxic effect to the

thrombotic process. Its lower anticoagulant effect may diminish

hemorrhagic transformation, with numerically fewer SICHs and

fewer asymptomatic ICHs despite greater prior antiplatelet use.

Its passage across the BBB is less than that with LOCM, while

retaining a favorable osmotic microvascular potential. It may also

have beneficial hydrostatic and vasoactive activity. The hypothesis

that a small difference in outcomes may indeed exist by using

different IRCM remains unproven in a small study population

with only 50% of subjects with major arterial occlusion predis-

posed to good outcome.88 Further analysis of not only the mag-

nitude of the clinical effect potential of isosmolal IRCM but also

the mechanisms conferring such benefit is warranted.
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