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ORIGINAL RESEARCH
BRAIN

Diagnostic Utility of Diffusion Tensor Imaging in Differentiating
Glioblastomas from Brain Metastases

S. Wang, S.J. Kim, H. Poptani, J.H. Woo, S. Mohan, R. Jin, M.R. Voluck, D.M. O’Rourke, R.L. Wolf, E.R. Melhem, and S. Kim

ABSTRACT

BACKGROUND AND PURPOSE: Differentiation of glioblastomas and solitary brain metastases is an important clinical problem because
the treatment strategy can differ significantly. The purpose of this study was to investigate the potential added value of DTI metrics in
differentiating glioblastomas from brain metastases.

MATERIALS AND METHODS: One hundred twenty-eight patients with glioblastomas and 93 with brain metastases were retrospectively
identified. Fractional anisotropy and mean diffusivity values were measured from the enhancing and peritumoral regions of the tumor.
Two experienced neuroradiologists independently rated all cases by using conventional MR imaging and DTI. The diagnostic performances
of the 2 raters and a DTI-based model were assessed individually and combined.

RESULTS: The fractional anisotropy values from the enhancing region of glioblastomas were significantly higher than those of brain
metastases (P � .01). There was no difference in mean diffusivity between the 2 tumor types. A classification model based on fractional
anisotropy and mean diffusivity from the enhancing regions differentiated glioblastomas from brain metastases with an area under the
receiver operating characteristic curve of 0.86, close to those obtained by 2 neuroradiologists using routine clinical images and DTI
parameter maps (area under the curve � 0.90 and 0.85). The areas under the curve of the 2 radiologists were further improved to 0.96 and
0.93 by the addition of the DTI classification model.

CONCLUSIONS: Classification models based on fractional anisotropy and mean diffusivity from the enhancing regions of the tumor can
improve diagnostic performance in differentiating glioblastomas from brain metastases.

ABBREVIATIONS: AUC � area under the curve; ER � enhancing region; FA � fractional anisotropy; IPR � immediate peritumoral region; LRM � logistic regression
model; MD � mean diffusivity

Differentiation of glioblastomas and solitary brain metastases

is an important clinical problem because the treatment strat-

egy can significantly differ depending on the tumor type.1,2 In

some cases, clinical history and/or multiplicity of enhancing brain

lesions makes the diagnosis of brain metastases relatively straight-

forward. However, a solitary brain metastasis on MR imaging can

have a nonspecific appearance. Similarly confounding the issue is

the fact that glioblastomas can also occasionally present as multi-

ple enhancing lesions. Moreover, although a glioblastoma typi-

cally presents as a solitary mass, a solitary brain metastasis may be

the first manifestation of disease in approximately 30% of patients

with systemic cancer.3 Hence, accurate distinction between glio-

blastomas and brain metastases can be challenging, often necessi-

tating an invasive surgical biopsy for a definitive diagnosis.

DTI has been used to differentiate glioblastomas from brain

metastases, but with conflicting results. Some reports have sug-

gested that mean diffusivity (MD)4-6 is helpful for the differenti-

ation, while others indicated the limited use of MD in the differ-

entiation of neoplasms.7-9 Wang et al10 and Reiche et al11

reported lower fractional anisotropy (FA) from the enhancing

regions (ERs) of glioblastomas compared with brain metastases.

In contrast, another study reported that glioblastomas have

higher FA in the enhancing regions than metastases.12 The poten-

tial reasons for these conflicting results may include differ-
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ences in analysis methods, particularly in defining the region of

interest, as well as the relatively small size of cohorts used in

individual studies (n � 24 – 66).4,5,7,10,13 Hence, a primary ob-

jective of this study was to investigate the DTI characteristics of

glioblastomas and brain metastases in a substantially larger

cohort of patients, in order to determine whether they may

have diagnostic utility.

Restricted water diffusion in solid tumors has been re-

ported by many groups.7,14-17 It is generally assumed that a

solid tumor does not have any microstructural orientation by

itself and its growth induces structural disorder in the tissue,

which leads to decreased FA.18 However, although the associ-

ation between FA and tumor cellularity has been studied, the

relationship remains unclear because both positive12,14,19 and

negative16 correlations have been reported. Our previous

study12 showing higher FA in glioblastomas than in brain me-

tastases also found a negative linear trend between FA and MD

in glioblastomas, which was not seen in metastases, perhaps

indicating a tumor-dependent relationship between these 2

parameters. While promising results with DTI have been pub-

lished in the diagnosis of brain tumors, to date, its clinical

value in improving the diagnostic accuracy of radiologists has

not been evaluated.

Hence, the objectives of the present study were to investigate

the potential of DTI in differentiation of glioblastomas from sol-

itary brain metastases in a relatively large cohort of 221 patients

and to compare its diagnostic accuracy in comparison with that of

2 experienced neuroradiologists.

MATERIALS AND METHODS
Patients
Patients with solitary enhancing lesions (n � 221), based on con-

trast-enhanced T1-weighted images, were retrospectively re-

cruited from our institutional data base between June 2006 and

February 2012. Patients with nonenhancing or multiple enhanc-

ing tumors or a clinical history of any prior therapy to the brain

were not included. The study was approved by the institutional

review board and was compliant with the Health Insurance Por-

tability and Accountability Act.

Histopathologic diagnosis of the tumor was available for all

patients through surgical resection or biopsy. The final diagnoses

included 128 glioblastomas (78 men, 50 women; age, 60.5 � 12.3

years; range, 24 –90 years) and 93 brain metastases (46 men, 47

women; age, 58.8 � 11.6 years; range, 44 – 88 years). Of the 93

metastases, the primary sites for cancer included lung (n � 56),

breast (n � 16), skin (n � 8), colon (n � 3), renal (n � 2), neck

(n � 1), arm (n � 1), parotid (n � 1), esophagus (n � 2), thyroid

(n � 1), peritoneum (n � 1), and endometrium (n � 1).

Data Acquisition
MR imaging studies were performed on a Tim Trio 3T whole-

body scanner (Siemens, Erlangen, Germany) by using a 12-chan-

nel phased-array head coil. Routine MR imaging pulse sequences

included axial T1-weighted 3D MPRAGE (TR/TE/TI � 1760/3.1/

950 ms, matrix size � 192 � 256, section thickness � 1 mm) and

axial FLAIR (TR/TE/TI � 9420/141/2500 ms, section thickness �

3 mm). DTI data were acquired by using a single-shot spin-echo

EPI sequence with parallel imaging by using generalized autocali-

brating partially parallel acquisition and an acceleration factor of

2. The DTI data from 55 patients (40 glioblastomas, 15 metasta-

ses) were acquired by using 12 diffusion-weighting directions

(TR/TE � 4900/83 ms, NEX � 6); and in the remaining 166

patients, DTI data were acquired with 30 directions (TR/TE �

5000/86 ms, NEX � 3). Other sequence parameters were as

follows: FOV � 22 � 22 cm2, b�0, 1000 s/mm2, section thick-

ness � 3 mm, total scanning time � 8 minutes. All our 12- and

30-direction DTI data were acquired by using the same imag-

ing parameters with the same scanning times at the same scan-

ner. On the basis of previous studies,20-22 we assume that there

is no significant difference in mean or median MD and FA

values from the 12- and 30-direction DTI datasets, particularly

when FA is mostly �0.3 as in the solid tumors included in this

study21 and we combined the data from all the patients in this

study.

Image Processing
The diffusion-weighted images were coregistered to the non-dif-

fusion-weighted (b�0) images by using the methods described in

another work.12 The corrected raw images were combined to es-

timate rotationally invariant DTI parameter maps, including FA

and MD, by using in-house software.12,23,24

The DTI parameter maps and FLAIR images were then coreg-

istered to contrast-enhanced T1-weighted images. A semiauto-

matic segmentation approach was used to subdivide each lesion

into 3 regions: enhancing region, immediate peritumoral region

(IPR), and distant peritumoral region by using contrast-en-

hanced T1 and FLAIR images.12 ER was the region with enhance-

ment higher than the mean �3 SDs of the signal intensity from

the WM. IPR was chosen as a 4-mm-wide band around the en-

hancing region. The remaining region of FLAIR abnormality,

outside of the IPR, was the distant peritumoral region.12,23,25 The

median FA and MD values were measured from the 3 regions.

Data analysis tools, including image coregistration and segmen-

tation, were implemented by using IDL (Exelis Visual Informa-

tion Solutions, Boulder, Colorado).

Data Analysis
A Mann-Whitney U test was used for the difference in the median

MD and FA values between glioblastomas and brain metastases

from the 3 regions. A P value � .05 was considered significant.

Linear regression analysis was used to investigate the association

between 2 continuous measures, FA and MD. A multivariate lo-

gistic regression analysis was used to determine the best classifi-

cation model of DTI parameters, namely the logistic regression

model (LRM). Bootstrapping validation was applied to estimate

the accuracy of the LRM. Specifically, 70% of the full dataset was

randomly selected with replacement and was used as an indepen-

dent validation set; this process was repeated 500 times.26 Means

and SDs of the area under the receiver operating characteristic

curves (AUCs) were computed. The cutoff lines for separating

glioblastomas from metastases were determined by maximizing

the sum of specificity and sensitivity (ie, Youden index).

Two neuroradiologists with 10 and 9 years of experience inde-

pendently reviewed the cases on the basis of contrast-enhanced

AJNR Am J Neuroradiol 35:928 –34 May 2014 www.ajnr.org 929



T1, FLAIR, DWI, FA, and MD maps. The radiologists were asked

to rate their level of confidence for each case, whether the tumor

was metastasis or glioblastoma. A rating was classified into 5 scales

based on the following 5 confidence levels: level 1, 90% metastasis;

level 2, 70% metastasis; level 3, 50%; level 4, 70% glioblastoma;

and level 5, 90% glioblastoma. The diagnostic performances of

the 2 raters and LRM were evaluated by using the receiver oper-

ating characteristic analysis curves. The AUCs were compared by

using the method of DeLong et al.27 The weighted � was used to

assess the interobserver agreement between the 2 raters and

LRM. All data analysis was conducted by using the Statistical

Package for the Social Sciences for Windows, Version 15.0

(IBM, Armonk, New York). R software (Version 2.15.0; http://

www.r-project.org) was used for the bootstrapping validation.

RESULTS
Comparison of Imaging Parameters
Representative MR images of patients with glioblastoma and me-

tastasis are shown in Fig 1. The MD maps in both cases showed

similar levels of restricted diffusion in the enhancing parts. In

contrast, the FA maps showed that the glioblastoma had higher

FA than the brain metastasis. The high FA rim extended to the

immediate peritumoral regions in glioblastomas. Similar obser-

vation was made with most cases as summarized by the box-

plots shown in Fig 2A, -B. The median FA value of glioblas-

tomas from the ER and IPR was significantly higher than that

of brain metastases (P � .01). There was no significant differ-

ence in the median values of MD from all the regions. None of

the parameters showed significant differences from the distant

peritumoral regions.

Diffusion Tensor Logistic
Regression Model
FA from the ER and IPR and MD from

the ER were evaluated for their diagnos-

tic performance by using receiver oper-

ating characteristic analysis (Table). The

single best predictor for the discrimina-

tion is FA from the ER with a sensitivity

of 0.80, a specificity of 0.76, and an AUC

of 0.84. The logistic regression analysis

indicated that the best model included

FA and MD from the ER as follows:

1) f�MD, FA�

�
1

1 � exp	� ��0 � �1MD � �2FA�

,

where �0 � �7.79, �1 � 2.14, and �2 �

43.30. This model was validated by using

the bootstrapping procedure described

above (repeated 500 times) with a mean

AUC of 0.86 and SD of 0.03.

The scatterplots of FA and MD from

the ER in Fig 2C demonstrate how LRM

can have a higher AUC than FA alone,

though MD itself is a poor predictor

(AUC � 0.50). The cutoff line of LRM

shown in Fig 2C was slanted and posi-

tioned between the linear regression

lines for glioblastomas and brain metastases, shown separately in

Fig 2D, -E, respectively. The linear negative regression between FA

and MD in the glioblastoma group was significant (R2 � 0.26, P �

.05).

Comparison between Diffusion Tensor and Raters
The results of diagnostic reading by 2 expert neuroradiologists by

using the 5-point rating scale and LRM output are presented as

scatterplots in Fig 3A, -B. If one assumes that the LRM output is

equivalent to the reader confidence level, confidence level 1 of the

raters (90% metastasis) corresponds to 0 – 0.2 of the LRM output;

confidence level 2, to 0.2– 0.4 of the LRM output; and so forth.

The weighted � values between the 2 raters, rater 1 and LRM, and

rater 2 and LRM, were 0.63, 0.40. 0.43, respectively, indicating

moderate agreement. The receiver operating characteristic analy-

sis curves in Fig 3C demonstrate that the diagnostic performances

of the 2 raters and LRM are similar; the AUC values were 0.90,

0.85, and 0.86, for rater 1, rater 2, and LRM, respectively. There

was a significant difference between the AUCs of rater 1 and rater

2 (P � .03).

Figure 3A, -B indicates that approximately half of the cases had

low confidence levels (levels 2– 4 for the raters and 0.2– 0.8 for the

LRM): 43% for rater 1, 56% for rater 2, and 50% for the LRM. Fig

3D shows the receiver operating characteristic analysis curves

only for the cases with confidence levels between 2 and 4 by both

raters (n � 72). The AUC of the LRM (0.87) for these challenging

cases was higher than those of rater 1 (0.70) and rater 2 (0.64),

suggesting that the LRM can be helpful in improving the classifi-

cation of the cases with low rater confidence levels.

FIG 1. Comparison of imaging features between glioblastomas (A–C) and brain metastases (D–F).
Both show ring enhancement and extensive edema on axial contrast-enhanced T1-weighted
images (A and D) and restricted diffusion of the enhancing part on MD maps (B and E). However,
for the FA map, the glioblastoma case demonstrates high FA values from the enhancing region.
The high FA starts from the enhancing region and extends to the immediate peritumoral region,
making an FA rim.

930 Wang May 2014 www.ajnr.org



FIG 2. Boxplot of FA and MD from the enhancing region in glioblastomas (white) and brain metastases (gray) (A and B). The outliers are
represented by circles. Asterisks indicate significant differences (P � .01). A scatterplot of FA and MD from the enhancing region of glioblastomas
(blue square) and brain metastases (purple circle) (C) is shown. The green line represents the cutoff line of MD; the blue line, the cutoff line of
FA; and the red line, the cutoff line of the combined model of FA and MD, which can successfully separate the glioblastomas and brain
metastases. FA and MD regression lines for glioblastomas (D), FA and MD regression lines for brain metastases (E), and the dotted line indicate
95% confidence intervals. There is a negative correlation of FA and MD in glioblastomas (R � 0.51, P � .05).

Diagnostic performance of 2 raters and the logistic regression model of DTI parameters for all the cases
Sensitivity Specificity PPV NPV AUC Cutoff Value

FAER 0.80 0.76 0.80 0.73 0.84 0.13
MDER (10�3 mm2/s) 0.73 0.34 0.60 0.47 0.51 1.21
FAIPR 0.65 0.68 0.73 0.58 0.69 0.17
LRM 0.84 0.77 0.83 0.78 0.86 0.50
Rater 1 0.70 0.93 0.75 0.94 0.90 4.5
LRM � rater 1 0.93 0.88 0.92 0.90 0.96 0.54
Rater 2 0.76 0.85 0.94 0.54 0.85 2.5
LRM � rater 2 0.85 0.85 0.88 0.81 0.93 0.54

Note:—PPV indicates positive predictive value; NPV, negative predictive value.
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DTI and Rater Combined Classifier
Figure 4 illustrates the improvement in the diagnostic accuracy of

each rater by combining with the LRM. A logistic regression

model was generated by using LRM output and rater 1:

2) f�Rater1, LRM� �
1

1 � exp	 � ��0 � �1Rater 1 � �2LRM�


where �0 � �9.54, �1 � 1.70, and �2 � 6.25. The scatterplot in

Fig 4A demonstrates that most of the glioblastomas are above the

diagonal line and most of the brain metastases are below the di-

agonal line. LRM plus rater 1 had an AUC of 0.96 compared with

0.9 by rater 1 alone. We tested the model by using rater 2. Figure

4B, -D shows that the combined model with LRM plus rater 1 can

also improve the results of rater 2. The AUC was 0.93, compared

with 0.85 by rater 2 alone. The combined model significantly im-

proved the AUC of both rater 1 (P � .001) and rater 2 (P � .001).

This model can be applied to all raters.

A summary of diagnostic performance of individual readers

and combined schemes of DTI parameters, including sensitivity,

specificity, positive predictive value, negative predictive value,

and AUC, is shown in the Table.

DISCUSSION
In this study, the diagnostic perfor-

mance of DTI based on FA and MD was

compared with those of 2 experienced

neuroradiologists. Our results demon-

strated that the diagnostic accuracy of

the classifier was as good as those of ex-

perienced neuroradiologists and that

LRM could be used to further improve

the diagnostic performance of the read-

ers. Our previous studies in a smaller

sample population (n � 63) have shown

that FA and MD from the enhancing

part are very useful for differentiating

glioblastomas from brain metasta-

ses.12,23 Results from the present study

with a substantially larger sample size

(n � 221) confirmed that FA and MD

from the enhancing part can be used to

generate a robust model for the classifi-

cation between glioblastomas and brain

metastases.

Our study demonstrated that FA

from the enhancing regions of glioblas-

tomas was significantly higher than that

of brain metastases. Toh et al28,29 re-

ported similar findings and interpreted

them as the influence of gliosis sur-

rounding the glioblastomas. We specu-

late that the high FA in glioblastomas

may be due to the orientation of over-

produced extracellular matrix.30,31 The

extracellular space and matrix play an

important role in tumor growth and in-

filtration. Glioblastoma cells produce

large amounts of tumor-specific extra-

cellular matrix components, which serve as a substrate for adhe-

sion and subsequent migration of the cells through the enlarged

extracellular space.30 These molecules accumulate and are ori-

ented in extracellular matrix,32 resulting in high anisotropy. Our

previous study in meningiomas demonstrated high FA and planar

anisotropy coefficient in fibroblastic meningiomas compared

with other subtypes.26 These findings can be explained by the

presence of a large amount of collagen in fibroblastic sub-

types.25,33 It has been reported that the structure and orientation

of extracellular matrix affect the anisotropy, but not the mean

diffusivity34; these results are consistent with ours. On the other

hand, in brain metastases, neoplasm cells grow into the brain

parenchyma in an expansive, noninfiltrating pattern. In contrast

to glioblastoma, degradation of the extracellular matrix begins the

process of metastasis.35,36

We did not observe a significant difference in MD values from

the enhancing region between glioblastomas and metastases, in-

dicating a limited sensitivity and specificity of this parameter in

tumor differentiation. However, MD was still an important pa-

rameter for LRM because FA in glioblastomas varied depending

on MD, but did not in metastases. If one assumes that MD reflects

FIG 3. Scatterplot of 2 raters and the logistic regression model for glioblastomas (blue square)
and brain metastases (purple circles) (A and B). Approximately half of cases were with low confi-
dence levels (levels 2– 4 for the raters and 0.2– 0.8 for the LRM). PGBM represents the probability,
predicted by the model, for glioblastoma (GBM). Receiver operative characteristic curve analysis
from 2 raters and the LRM for the whole cases (C) and challenging cases for the raters with
confidence level of 2– 4 (D) are shown. The performance of the LRM is close to that of both raters.
For challenging cases, the performance of the LRM remains at about the same level as those for
all cases.
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cellularity, our findings from in vivo data substantiate previous

reports on the positive correlation between FA and tumor cellu-

larity.12,14,19 Furthermore, our study shows, for the first time, that

such association between FA and MD is found only in glioblas-

tomas, but not in brain metastases. The underlying mechanism

for such discrepancy between these 2 types of tumors is not fully

understood, but it may help in improving the diagnostic accuracy

as demonstrated in this study.

In this study, the AUC values are similar between the raters

(0.90 and 0.85) and LRM (0.86). This result indicates that the 2

raters and LRM had differences in their confidence levels for in-

dividual cases, but overall the performance of LRM was close to

that of both raters. Furthermore, with the use of the DTI classifi-

cation model, the diagnostic performance of each radiologist im-

proved noticeably, with high sensitivity, specificity, positive pre-

dictive values, and negative predictive values. The AUC increased

from 0.90 to 0.96 for rater 1 and from 0.85 to 0.93 for rater 2. The

model is easy to use in clinical practice. Specifically, the readers

first interpreted the case on the basis of the 5-scale confidence

levels. Then they put the FA and MD values from the enhancing

part into equation 1 and calculated the probability. Finally they

used equation 2 to get the final interpretation. Alternatively, on

the basis of the promising results of the current study, the LRM

output can be provided to the radiologists as complementary

information to consider when reading

the case. A future study is warranted to

test whether the availability of the LRM

output can improve the diagnostic per-

formance of radiologists with different

levels of experience. We also evaluated

challenging cases for the readers with

lower confidence levels. The AUC re-

mained at about the same level as that in

all the cases. This finding was in accor-

dance with several previous stud-

ies5,12,17 and indicates that the model is

very helpful for readers, even for experi-

enced radiologists.

A potential limitation of our study is

its retrospective design. To further vali-

date our results, a prospective study with

similar or larger cohort size is war-

ranted. Water diffusivity is affected by

many factors including cellularity, ex-

tracellular volume, viscosity, and mem-

brane permeability. The mean diffusiv-

ity and directionality changes measured

by DTI are the sum of all the microstruc-

tural changes. Hence, a thorough patho-

logic investigation would be necessary to

elucidate the underlying tissue structure

responsible for higher FA in glioblas-

tomas and the association with MD. In

this retrospective study, image-guided

biopsy was not available. Future study

with pathologic validation is required.

Furthermore, we may further improve

the DTI-based model by using histogram analysis of FA and MD

values in voxels. Future study is warranted to fully use the vast

voxelwise information collected through DTI for better diagnosis.

CONCLUSIONS
The classification model based on FA and MD from the enhanc-

ing region is a robust one for differentiating glioblastomas from

brain metastases. The model performed as well as experienced

neuroradiologists. The diagnostic performance of radiologists in

differentiating glioblastomas from brain metastases can be im-

proved by adding a DTI classification model.
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