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REVIEW ARTICLE

Optimal Timing of Cerebral MRI in Preterm Infants to Predict
Long-Term Neurodevelopmental Outcome:

A Systematic Review
A. Plaisier, P. Govaert, M.H. Lequin, and J. Dudink

ABSTRACT

SUMMARY: Advances in neonatal neuroimaging have improved detection of preterm brain injury responsible for abnormal neuromotor
and cognitive development. Increasingly sophisticated MR imaging setups allow scanning during early preterm life. In this review, we
investigated how brain MR imaging in preterm infants should be timed to best predict long-term outcome. Given the strong evidence that
structural brain abnormalities are related to long-term neurodevelopment, MR imaging should preferably be performed at term-equiva-
lent age. Early MR imaging is promising because it can guide early intervention studies and is indispensable in research on preterm brain
injury.

ABBREVIATIONS: DEHSI � diffuse excessive high signal intensity; FA � fractional anisotropy; PLIC � posterior limb of the internal capsule; PMA � postmenstrual
age; PWML � punctate white matter lesions

Preterm birth with subsequent brain injury is an increasing

public health concern. Advances in neonatal intensive care

have significantly improved survival rates among very-low-birth-

weight infants, but survivors are still at considerable risk to de-

velop cognitive, behavioral, neurosensory, and motor disabili-

ties.1-5 The most common preterm brain injury patterns are the

following: WM injury; germinal matrix-intraventricular hemor-

rhage and its correlates; and posthemorrhagic ventricular dilation

and periventricular hemorrhagic venous infarction (Fig 1). Cystic

periventricular leukomalacia is seen less often now, and diffuse

noncystic types of WM injury, including punctate WM lesions

and diffuse excessive high signal intensity, are therefore most fre-

quent6-10 and the leading cause of disturbed brain growth, con-

nectivity, and functionality.11-13

Although MR imaging is superior to cranial sonography in

detecting diffuse WM injury,14-17 structural MR imaging studies

fail to precisely predict outcome6,8,18 because conventional MR

imaging is not sensitive enough to measure changes in micro-

structure.19 However, advanced MR imaging acquisition se-

quences and postprocessing techniques, such as DTI, volumetric

MR imaging measurements, and proton MR spectroscopy

(1H-MR spectroscopy), may be a solution. For example, DTI al-

lows quantification of WM at a microstructural level by measur-

ing the diffusion of water molecules in tissues.20,21

DTI studies have shown increasing fractional anisotropy and

decreasing ADC during brain maturation, which is ascribed to the

decreased water content and increased WM complexity due to

myelination.20,22 Deviations from these developmental trends are

considered diagnostic of perinatal WM injury.23-25

WM injury in preterm infants has been related to significantly

reduced brain volume,26,27 but brain growth in extremely preterm

infants may also be disturbed in the absence of evident WM abnor-

malities. Volumes of brain regions and structures are correlated to

perinatal complications and are inversely related to gestational age at

birth.28,29 Smaller volumes are often associated with impaired neu-

ropsychological function at a later age.29,30

Assessment of cortical folding during early brain development,

with the use of postprocessing software,31 has provided insight into

the underlying mechanisms of normal development, regional spe-

cialization, and functional lateralization.32,33 Anomalous cor-

tical folding, demonstrated in preterm infants, has been proposed as

an early biomarker of neurocognitive impairment.34,35

Metabolic integrity of tissues can be measured in vivo with
1H-MR spectroscopy. The NAA/Cho ratio is of special interest in

neonatal neuroimaging because the ratio increases during brain

maturation as an effect of synthesis by proliferating oligodendro-

cyte progenitor cells.36

Early MR imaging provides early biomarkers of preterm brain

injury and enables early parental counseling. However, systematic
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use of such MR imaging has its limitations due to hemodynamic,

respiratory, and thermodynamic instability seen in most preterm

infants.37 Moreover, technical aspects like smaller heads result in

lower SNR.38 As in most studies obtained at term-equivalent

age,18,30 less is known about the value of scanning at a lower

postmenstrual age. Furthermore, brain injury can also occur in

the late preterm period. MR imaging at term has the disadvantage

of parents and caregivers not being fully informed until their child

reaches term age. Furthermore, logistic issues may emerge in cen-

ters where infants are transferred to other hospitals once certain

criteria are met.

Because there seems to be no consensus on the optimal timing

of MR imaging, we reviewed the literature on the prediction of

neurodevelopmental outcome with the use of brain MR imaging

performed at either early preterm or term age.

MATERIALS AND METHODS
The Embase, MEDLINE OvidSP, Cochrane, and PubMed data-

bases were systematically searched for relevant articles published

between 1979 and November 2012. The strategy included syn-

onyms and combinations of the following keywords: “prematu-

rity, ” “neuroimaging, ” “brain, ” and “MR imaging ” (full re-

search strategy is available on-line). The search was limited to

human research that involved original patient data, and only ar-

ticles written in English were included.

Studies were eligible under the following conditions: 1) they

included preterm infants born at �32 week’ gestation, 2) MR

imaging was performed in the neonatal period, and 3) neurode-

velopmental outcome was linked to MR imaging findings. To

avoid large variations in MR imaging determinants, we only in-

cluded structural MR imaging studies if

they evaluated the findings according to

a reproducible classification.

The initial search resulted in 2104 ci-

tations. Two reviewers (A.P., J.D.)

screened all abstracts of these citations

for relevance and reached a consensus

after discussion in case of disagreement.

Sixty-two articles were incorporated in

this review. In the “Results ” section, we

present findings according to type of

MR imaging technique: conventional

structural MR imaging, such as T1- and

T2-weighted scans, DTI, volumetric MR

imaging, and proton MR spectroscopy.

Further classification was based on the

timing of MR imaging: serial, before 35

weeks’, or after 35 weeks’ PMA.

RESULTS
Conventional Structural MR
Imaging

Serial MR Imaging. Three serial neuro-

imaging studies correlated injury to out-

come (Table 1). One was a prospective

consecutive MR imaging study by Dyet

et al,8 regarding 327 MR imaging scans

of 119 preterm infants. Only major destructive cerebral and cer-

ebellar lesions seen at the initial scan within 2 days after birth were

related to poorer neurodevelopmental outcome. DEHSI and pos-

themorrhagic ventricular dilation at term-equivalent age were

significantly related to adverse outcome. Isolated hemorrhage or

PWML did not seem to predict adverse neurodevelopmental out-

come. The second, by Miller et al,39 demonstrated that moder-

ately severe abnormalities, such as WM injury, ventriculomegaly,

and intraventricular hemorrhage on early scans were associated

with adverse neurodevelopmental outcome as strongly (or even

more strongly) as abnormalities on the term-equivalent scans:

The relative risk was 5.6 and 5.3, respectively. The third, a large

serial MR imaging study by Tam et al,40 demonstrated that not

only large but also small cerebellar hemorrhages, not detected on

cranial sonography, were associated with abnormal neurologic

examination at 3– 6 years of age. The presence of these small cer-

ebellar hemorrhages was associated with a 5.0 odds ratio of ab-

normal neurologic examination findings at a mean age of 4.8

years.

MR Imaging at �35 Weeks’ PMA. The presence of cystic periven-

tricular leukomalacia and cerebellar hemorrhage at 35 weeks’ ges-

tation was significantly correlated to abnormal neurologic exam-

ination findings at 30 months in a retrospective neuroimaging

study by Cornette et al.41 Isolated PWML was not correlated to

abnormal neurodevelopmental outcome at 30 months of age

(Table 2).

MR Imaging at �35 Weeks’ PMA. Twenty-six studies correlated

brain injury or conventional MR imaging at 35 weeks’ PMA with

outcome (On-line Table).

FIG 1. Evolution of common types of preterm brain injury, at 30 weeks’ postmenstrual age (1) and
at term-equivalent age (2). Transversal T2-FSE images of punctate white matter lesions (A),
periventricular leukomalacia (B), and periventricular hemorrhagic venous infarction (C). Note that
images 2B and 2C are slightly oblique.
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The impact of overt WM lesions at term on neurodevelop-

ment has been extensively investigated. The severity of WM

abnormalities is often assessed according to a comprehensive

scoring system15 and is assumed to be directly associated with

the incidence of neuromotor impairment until 5 years of

age9,10,15-17,42-49 and to be inversely correlated to the Bayley

scales50 until 30 months15,16,43,51-54 and cognitive performance

until 9 years of age.55-60 The presence of WM injury has an odds

ratio of 8.3 for low full-scale intelligence quotient (IQ � 70).59

Moderate-to-severe WM abnormalities highly predict severe mo-

tor delay; odds ratios up to 10.0 and positive predictive values up

to 100% have been demonstrated.15,42,44,45,52,59

The association between subtle diffuse WM injury and neuro-

developmental outcome is not clear.61 Some research groups

demonstrated a significant association between PWML and im-

paired neurodevelopmental outcome,10,46,62 whereas others sug-

gested the contrary, provided that no other major lesions were

observed.8,52 DEHSI was associated with adverse outcome in a

large serial imaging study by Dyet et al,8 but others could not

confirm this finding.10,42,51,59,62,63 The lack of clarity is thought to

be due to the absence of objective definitions for these patterns of

brain injury24,48,64 and raises the importance of objective assess-

ment of diffuse WM injury.

Extensive intraventricular hemorrhage and venous infarc-

tions, according to Papile et al,65 are associated with neurodevel-

opmental impairment.16,17,48,53 Posthemorrhagic ventricular di-

lation is associated with neurologic impairment until 6 years of

age.66 In a study by De Vries et al,67 asymmetric myelination of the

PLIC at term age in preterm infants with venous infarction

seemed to be an early predictor of future hemiplegia.

Although commonly described in cranial sonographic

studies,68 caudothalamic cysts were not related to cognitive

and neuropsychological impairment in a MR imaging study by

Lind et al.69

The impact of gray matter abnormalities remains unclear.

They were significantly associated with abnormal neurobehav-

ioral outcome at term in a study by Brown et al47 and with de-

creased Bayley scales at 2 years in a study by Woodward et al,15 but

others9,59 found no significant relationship between injury to the

cerebral gray matter and neuromotor function at term9 or cogni-

tive outcome at 9 years of age.59

Diffusion Tensor Imaging

Serial MR Imaging. Two serial DTI studies found a significant

correlation with cognitive and neurosensory outcome (Table 1).

Drobyshevsky et al70 demonstrated that the Bayley performance

index at 24 months was correlated with FA of the PLIC at 30 weeks

Table 1: Details of included serial MRI studies

MRI Modality Population
Timing of
MRI (wk) Main Findings

Structural
conventional

Dyet et al8 119 Infants �30 wks Serial Abnormal outcomea at 18 mos was related to major
destructive lesions, DEHSI, cerebellar hemorrhage, and
posthemorrhagic ventricular dilation

Miller et al39 89 Infants �34 wks 32 � 37 Abnormal outcome at 18 mosb was related to severity of
WM injury, ventriculomegaly, and intraventricular
hemorrhage on first (RR, 5.6) and second (RR, 5.3) MRIs

Tam et al40 131 Infants �34 wks 32 � 37 Abnormal neurologic examination findings at 4.8 yrs
were related to large and small cerebellar hemorrhage;
OR for small hemorrhage was 5.0

DTI Drobyshevsky et al70 24 Infants �32 wks 30 � 36 PDIb at 24 mos correlated to FA of the PLIC at 30 wks
(r � 0.55), faster increase of FA/wk in internal capsule
(r � �0.63), and occipital WM (r � �0.59)

Glass et al71 9 Infants �34 wks 33 � 38 FA of the optic radiation was correlated with visual-
evoked-potential amplitude (r � 0.7) at 10.5 mos

Volumetric Dubois et al81 45 Infants �36 wks 32 � 41 Functional assessment at term was associated with inner
cortical surface and sulcation index

Kapellou et al82

Rathbone et al83
119 Infants �30 wks Serial Growth of the cortical surface area was related to

neurodevelopmental outcomea at 24 mos and full-
scale IQ at 6 yrs

Note:—RR indicates relative risk; OR, odds ratio; PDI, Psychomotor Development Index.
a Griffiths Mental Developmental Scales.
b Bayley Scales of Infant Development.

Table 2: Details of included MRI studies, scanned at <35 weeks’ postmenstrual age

MRI Modality Population
Timing of
MRI (wk) Main Findings

Structural conventional Cornette et al41 50 Infants �37 wks 35 Major cerebral abnormalities were correlated to
abnormal outcome at 30 mos; isolated PWML
were not related to neurodevelopmental
impairment

Volumetric Badr et al84 59 Infants �37 wks 31 WM volume was correlated significantly to PDIa

(r � 0.29) and MDIa (r � 0.31) at 18 mos

Note:— PDI indicates Psychomotor Development Index; MDI, Mental Development Index.
a Bayley Scales of Infant Development.
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(r � 0.55) and faster increase of FA per week in the internal cap-

sule (r � �0.63) and occipital WM (r � �0.59). Increased FA

values in the optic radiation at 33 and 37 weeks were associated

with increased visual-evoked-response amplitudes at 10.5

months (r � 0.7).71 However, this may not necessarily mean that

eventually visual function is better.

MR Imaging at �35 Weeks’ PMA. None of the included studies

related early DTI measurements to long-term outcome.

MR Imaging at �35 Weeks’ PMA. In a tract-based spatial statis-

tics study by van Kooij et al,72 FA values of the corpus callosum

were correlated to cognitive scores, gross motor scores were

correlated with radial diffusion of the corpus callosum and

internal and external capsules, and fine-motor scores were cor-

related to FA throughout the WM. Other DTI studies have

demonstrated similar correlations: DTI parameters of the cor-

pus callosum, PLIC, right orbital frontal cortex, and centrum

semiovale were correlated to cognitive performance (On-line

Table).73-76 In other studies, DTI measurements of the corpus

callosum, PLIC, and corona radiata were correlated to motor

function.74,77-79 Furthermore, FA values of the optic radiation

were directly correlated to visual assessment scores at term-

equivalent age.80

Volumetric MR Imaging

Serial MR Imaging. Three serial volumetric MR imaging studies

demonstrated that early structural abnormalities are predictors of

neurobehavioral outcome (Table 1). Dubois et al81 concluded

that at term-corrected age, neurobehavioral development was sig-

nificantly associated with quantitative surrogates of cortical fold-

ing. Kapellou et al82 found that the ratio between cortical surface

area and cerebral volume was directly related to neurodevelop-

ment at 24 months. The same group showed that growth of the

cortical surface area was also significantly related to intelligence at

6 years: A faster growth of 0.032% per week resulted in an increase

of 1 IQ point.83

MR Imaging at �35 Weeks’ PMA. Badr et al84 found that WM

volume on MR imaging at a mean PMA of 31 weeks was signifi-

cantly correlated to the Bayley Psychomotor Development Index

(r � 0.29) and Mental Development Index (r � 0.31) at 18

months (Table 2).

MR Imaging at �35 Weeks’ PMA. Volumetric MR imaging stud-

ies in preterm infants with neurodevelopmental impairment have

demonstrated significantly smaller total brain volume54,66,85 and

volume of several cerebral structures or regions, including the

cerebellum,66,86-89 total WM,90 total28,91 and deep66,76 gray mat-

ter, occipital lobes,92 hippocampus,93,94 and brain stem,95 as well

as significantly larger ventricles (On-line Table).28,96 These find-

ings were irrespective of the presence of overt brain injury. Simple

linear metric assessment, such as biparietal and cerebellar diam-

eter, on MR imaging also significantly correlated with neurocog-

nitive function.97,98 Impaired social-emotional development at 5

years was associated with decreased hippocampal volume in girls

and decreased frontal lobe growth in boys.75

Proton MR Spectroscopy

MR Imaging at �35 Weeks’ PMA. 1H-MR spectroscopy is an ac-

curate quantitative biomarker for the prediction of neurodevel-

opmental outcome after hypoxic-ischemic encephalopathy in

term infants (On-line Table).99 It is not clear whether this holds

true for preterm infants. The cerebellar NAA/Cho ratio at term is

suggested to correlate with cognitive outcome at 24 months.89

However, Gadin et al91 found no correlation between MR spec-

troscopy of the periventricular WM and motor development at 6

months.

DISCUSSIONS
This systematic review included 8 serial MR imaging studies, 2

MR imaging studies performed at �35 weeks, and 52 MR imaging

studies performed at �35 weeks. The results of these studies made

clear that the extent of structural abnormalities, microstructural

deviations, and global reductions in brain volumes, both at pre-

term and term age, is directly related to the level of neuromotor

and neurocognitive performance in childhood. Involvement of

WM in preterm brain injury seems paramount. Accurate assess-

ment of WM integrity, therefore, may help predict long-term out-

come in preterm infants and is one of the challenging goals in the

field of neonatal neurology.

These studies do not provide clear evidence on the optimal

timing of MR imaging. Although an increasing number of neuro-

imaging studies used early MR imaging to show that brain abnor-

malities are often present during early preterm life,22,100,101 only 2

of the studies linked these findings to outcome. Dyet et al8 dem-

onstrated that MR imaging within the first 2 days after birth was of

limited additional value for predicting outcome. On the other

hand, Miller et al39 reported that early MR imaging findings at 32

weeks’ gestation were as reliable for predicting neurodevelopment

as MR imaging findings at term age. This finding suggests that

predictive MR imaging may be performed well before term-

equivalent age, provided it is after the first week of life.

Neonatal care would benefit from identifying brain injury

early in preterm life, in terms of effective and timely parental

counseling, tailored rehabilitation strategies, and better under-

standing of neuropathology. Currently, we have no efficacious

therapy for preterm brain injury, but trials on possible neuropro-

tective agents, such as erythropoietin, melatonin, stem cell ther-

apy, and magnesium sulfate are being conducted or planned for

the near future.102,103 Early MR imaging could provide early bio-

markers that trials could target.

Image acquisition, processing, and interpretation are not as

straightforward as with conventional MR imaging, though so-

phisticated techniques such as DTI allow objective and quantifi-

able assessment of cerebral tissue. Because measurement accuracy

depends on various aspects, including scanner type, hardware

setup, acquisition settings, and clinical characteristics, reproduc-

ibility of the same measurements in different imaging centers is

low. Furthermore, the availability of normal ADC and FA values

of specific WM structures is limited. In addition, DTI is especially

sensitive to image artifacts and corruption.104 Reliable conclu-

sions can therefore only be drawn if quality assessment before

postprocessing provided satisfactory data quality. In the included

studies, quality assessment was often not performed.
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MR imaging is expensive and time-consuming and requires

great experience and dedication to ensure patient safety37 as well

as good quality data and interpretation.105 These limitations

should be especially taken into account with regard to the indi-

vidual clinical care for patients with normal cranial sonography

findings. This technique can reliably predict some aspects of the

outcome of preterm infants and allows serial neuroimaging in a

fast, convenient, and less-expensive manner.106,107 Moreover, ad-

vanced applications, such as color Doppler sonography, also al-

low objective and quantitative brain assessment.

Several limitations of this systematic review need to be ad-

dressed. First, heterogeneity of the study populations was due to

variation in age at MR imaging, acquisition settings, postprocess-

ing methods for MR imaging evaluation and other technical as-

pects of MR imaging scanners, different ages at outcome measure-

ment, and different measures of outcome. Second, follow-up

periods were relatively short. Third, because the search was re-

stricted to articles in the English language, possible relevant stud-

ies might not have been included.

CONCLUSIONS
MR imaging remains an outstanding method to predict long-

term neurodevelopmental outcome, and cerebral MR imaging

should be part of standard clinical care for preterm infants. Early

MR imaging allows timely parental counseling, targeting of reha-

bilitation strategies, and availability of early biomarkers. How-

ever, the individual prognostic information provided by early

scanning remains inferior to that provided by term scanning. As

long as the correlation of brain injury from early MR imaging with

outcome is not clear, we would argue that standard MR imaging

should preferably be performed at term-equivalent age. On the

other hand, early MR imaging yields important information

about the pathogenesis of preterm brain injury and therefore is

indispensable in research on preterm brain injury.
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