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REVIEW ARTICLE

MR Imaging of Gray Matter Involvement in
Multiple Sclerosis: Implications for Understanding
Disease Pathophysiology and Monitoring
Treatment Efficacy

M. Filippi
M.A. Rocca

SUMMARY: Recent pathologic and MR imaging studies have challenged the classic view of MS as a
chronic inflammatory-demyelinating condition affecting solely the WM of the central nervous system.
Indeed, an involvement of the GM has been shown to occur from the early stages of the disease, to
progress with time, and to be only moderately correlated with the extent of WM injury. In this review,
we summarize how advances in MR imaging technology and methods of analysis are contributing to
ameliorating the detection of focal lesions and to quantifying the extent of “occult” pathology and
atrophy, as well as to defining the topographic distribution of such changes in the GM of patients with
MS. These advances, combined with the imaging of brain reorganization occurring after tissue injury,
should ultimately result in an improved understanding and monitoring of MS clinical manifestations and
evolution, either natural or modified by treatment.

ABBREVIATIONS: Cereb � cerebellum; Cho � choline; CIS � clinically isolated syndromes; DIR �
double inversion recovery; DTI � diffusion tensor imaging; EDSS � Expanded Disability Status
Scale; FA � fractional anisotropy; FLAIR� fluid-attenuated inversion recovery; fMRI � functional
MR imaging; GM � gray matter; L � left; MD � mean diffusivity; MS � multiple sclerosis; MT �
magnetization transfer; MTR � magnetization transfer ratio; NAA � N-acetylaspartate; NAWM �
normal-appearing white matter; PM � premotor cortex; PPMS � primary-progressive MS; R �
right; RRMS � relapsing-remitting MS; RT � relaxation time; SII � secondary sensorimotor cortex;
SMA � supplementary motor area; SMC � sensorimotor cortex; SPM � statistical parametric
mapping; SPMS � secondary-progressive MS; Thal � thalamus; WM � white matter

Pathologic and MR imaging studies are challenging the view
of MS as a chronic inflammatory-demyelinating condi-

tion affecting solely the WM of the central nervous system.
Indeed, there is a growing body of evidence showing that a
significant portion of MS-related damage affects virtually all
the GM structures. Pathologically, cortical lesions have been
distinguished in mixed WM-GM lesions (type I) and purely
intracortical lesions (types II, III, and IV).1 The latter may
represent more than two-thirds of macroscopic cortical pa-
thology in the disease,1 and the extent of cortical demyelina-
tion can exceed that occurring in the WM.1 Demyelination is
seen not only in the neocortex (especially in the cingulate cor-
tex)1,2 but also in the GM of the thalamus, basal ganglia, hy-
pothalamus, hippocampus, cerebellum, and spinal cord.2

Compared with WM lesions, GM lesions are characterized by
a much milder lymphocytic infiltration, less microglial activa-
tion, and fewer perivascular cuffs.3 GM lesions also lack com-
plement deposition and have only a modest increase in blood-
brain barrier permeability.2 In MS, GM pathology also
includes neuronal injury, with neuritic swelling as well as den-
dritic and axonal transections.2 In addition to focal lesions,

wallerian and trans-synaptic degeneration of fibers passing
through diseased WM areas can cause GM damage in MS.2

Consistent with pathologic observations, recent MR imag-
ing studies have shown a marked involvement of the GM in
MS in terms of focal lesions, “diffuse” tissue abnormalities,
and irreversible tissue loss (ie, atrophy). These studies have
also shown that GM injury affects the cerebral cortex, brain
deep nuclei, and cerebellum and spinal cord; is present from
the earliest clinical stages of the disease; accumulates with
time; and is, at least partially, independent of the WM damage.
In addition, the application of fMRI holds significant promise
for improving our understanding of the role of GM changes in
MS pathophysiology.4

This review summarizes the main results obtained from the
use of conventional and quantitative MR imaging�based
techniques for the assessment of GM pathology and dysfunc-
tion in patients with MS. The implications of such findings in
ameliorating the monitoring of the efficacy of new experimen-
tal treatment will also be discussed.

Imaging GM Lesions
Despite its high sensitivity in detecting MS abnormalities,5

conventional T2-weighted MR imaging is unable to depict the
burden of GM lesions because these lesions are typically small,
have poor contrast with the surrounding normal GM, and, in
case of cortical lesions, have partial volume effects from the
CSF. Fast FLAIR and gadolinium-enhanced T1-weighted se-
quences were the first used to increase the amount of GM
lesion detection in MS.6,7

More recently, DIR sequences have been developed and
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used to improve further the sensitivity of MR imaging in de-
tecting such lesions.8 DIR imaging depicted more intracortical
lesions than standard MR imaging techniques, with gains of
538% and 152% compared with conventional T2-weighted
and FLAIR sequences.8 The increased contrast between lesions
and their surroundings resulted in an improved distinction
between juxtacortical and mixed WM-GM lesions.8 With DIR
sequences, intracortical lesions have been detected in all the
major MS clinical phenotypes, including in patients with CIS
suggestive of MS.9-11 The number of such lesions was found to
be higher in patients with SPMS than in those with CIS or
RRMS,9 indicating that the lesions tend to accumulate with
time, as was also confirmed by a few longitudinal studies (Fig
1).10-12 Despite this finding, most of the cortical lesions still
cannot be visualized with DIR imaging. Indeed, on average,
DIR imaging allows classifying as intracortical only 4.6% of
the overall number of GM lesions,9 in contrast to a figure of
59% reported by pathologic studies.1,2

As a consequence, new strategies have been proposed to
improve the detection and allow a reliable classification of
cortical MS lesions, including the use of a single-slab 3D DIR
sequence13 and the combination of DIR with other MR imag-
ing, such as phase-sensitive inversion recovery14 and 3D mag-
netization-prepared rapid acquisition with gradient echo im-
aging.15 An additional gain in GM lesion detection is likely to
be achieved due to the increased availability of high-field MR
imaging scanners. Kangarlu et al16 showed that cortical lesions
invisible on MR imaging at 1.5T are clearly seen at 8T. Using a
7T scanner, Mainero et al17 identified, in 16 patients with MS,
199 cortical lesions with patterns of distribution resembling
those described histopathologically.

Cortical lesion burden was found to be higher in patients
with MS and epilepsy compared with those without,18 the in-
crease of cortical lesion number with time is lower in patients
with benign MS than in those with RRMS,11 and accumulation
of cortical lesions with time is associated with worsening of
clinical disability in PPMS10 and cognitive impairment in pa-
tients with relapsing-onset MS.19

Although lesional involvement of the deep nuclei of pa-
tients with MS has not been studied as extensively as that of the
cerebral cortex, T2-hyperintense lesions in the basal ganglia
have been detected in 25% of patients with MS.20 More re-
cently, hippocampal lesions have been visualized on 3D DIR
images.21

Imaging GM Damage Beyond Focal Lesions
Other aspects of MS-related GM involvement have to be con-
sidered, including “diffuse” tissue changes, irreversible tissue
loss, topography of damage location, and the presence and
efficiency of mechanisms of cortical reorganization following
injury.

Imaging “Diffuse” GM Damage
Diffuse GM damage in MS may be due to the presence of focal
lesions beyond the resolution of available MR imaging tech-
nology, degenerative phenomena secondary to local discrete
areas of demyelination, and retrograde and trans-synaptic de-
generation of fibers passing through WM plaques. Quantita-
tive MR imaging�based techniques provide accurate esti-
mates of “overall” GM abnormalities. This includes not only
diffuse changes but also focal lesions, and as a consequence,
future studies are warranted to disentangle the relative contri-
butions of each of these pathologic aspects.

MT MR Imaging. MT MR imaging allows the calculation
of an index, the MTR, which, when reduced, indicates a di-
minished capacity of the protons bound to the brain tissue
matrix to exchange magnetization with the surrounding
“free” water, thus providing an estimate of the extent of MS
tissue disruption.22 Several studies have demonstrated re-
duced MTR values in the brain GM in patients with different
MS phenotypes,22 including those at the earliest clinical stages
of the disease.22 GM MTR abnormalities were correlated with
disease duration and are more pronounced in patients with
PPMS or SPMS than in those with other clinical phenotypes.22

GM MTR changes correlate with clinical disability22-24 and
cognitive impairment.25 In patients with relapsing-onset MS,

Fig 1. Brain axial DIR images from a patient with RRMS at baseline (A) and after 6 months (B ). Multiple cortical lesions are visible. The size of 1 cortical lesion in the right parietal lobe
(arrows) is increased after 6 months. Reprinted from Neuroimage, 42, Calabrese M et al, Morphology and evolution of cortical lesions in multiple sclerosis: a longitudinal MRI study,
1324 –28, 2008, with permission from Elsevier.
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GM MTR was an independent predictor of the accumulation
of disability during the subsequent 8 years.26 In patients with
PPMS, GM MTR decline reflected the rate of clinical deterio-
ration during 3 years.27

DTI. DTI enables the random diffusional motion of water
molecules to be measured, thus providing metrics, such as MD
and FA, which allow quantification of the size and geometry of
water-filled spaces.28 DTI confirmed the presence of GM dam-
age in MS28 and showed that the extent of such damage differs
among the various disease phenotypes, being more severe in
patients with SPMS.28 An increased diffusivity in the thalami
of patients with MS has also been found, which was again more
pronounced in patients with SPMS than in those with RRMS.
Longitudinal DTI studies28 have demonstrated a worsening of
GM damage with time in patients with RRMS, SPMS, and
PPMS.28 A moderate correlation between GM MD and the
degree of cognitive impairment has been detected in mildly
disabled patients with RRMS.29 GM diffusivity was also found
to predict accumulation of disability during a 5-year period in
patients with PPMS.30

Proton MR Spectroscopy. Proton MR spectroscopy
(1H-MR spectroscopy) can define several chemical correlates
of the pathologic changes occurring in the brain.31 Several
studies have found metabolite abnormalities, including re-
duced concentrations of NAA and Cho, and increased concen-
trations of myo-inositol in the cortical31 and subcortical GM
tissue32-34 of patients with MS. These were shown to occur
even in early RRMS and in patients with CIS suggestive of
MS.31 Such findings disagree, at least partially, with the results
of other studies,35,36 in which significant decreases of Cho,
creatine, and NAA concentrations were found in the GM of
patients with the progressive forms of the disease, but not in
those with RRMS. NAA reduction has also been demonstrated
in the thalamus of patients with SPMS and RRMS 32,33 and in
the cerebral cortex of patients with PPMS.37 A reduced con-
centration of glutamate/glutamine in the cortex of patients
with PPMS has also been detected, which was correlated with
the EDSS score.37

T1- and T2-Based Measures. T1- and T2-based measures
allow quantification of microscopic damage to the GM be-
yond the resolution of conventional imaging.38 Increased tha-
lamic T1 RTs were related to the severity of fatigue in patients
with RRMS.39 Iron deposition, a possible sign of neurodegen-
eration, was thought to be the substrate of T2 hypointense GM
areas and reduced T2 RTs seen in the basal ganglia, thalamus,
dentate nucleus, and cortical regions of most MS clinical phe-
notypes.38 GM T2 hypointensity correlates with the severity of
clinical disability and cognitive impairment in patients with
MS.38

Imaging GM Atrophy
High-resolution MR images and automated segmentation
techniques have allowed the achievement of an accurate quan-
tification of GM tissue volume and improvement of our un-
derstanding of the dynamics of GM tissue loss in MS.

Patients with CIS who developed MS during the subse-
quent 3 years had significant GM loss.40 A significant reduc-
tion with time of the GM fraction has also been observed in
patients with early RRMS.41 A longitudinal study of 117 pa-
tients with RRMS42 found a decrease of GM volumes on

monthly scans during 9 months, whereas WM volumes re-
mained relatively stable. A similar trend of GM tissue loss was
detected in patients with early PPMS during 1 year.43 In a
large-scale study of 597 patients with MS, significantly re-
duced WM and GM fractions were found in all phenotypes;
the most severe tissue loss was detected in SPMS.44

GM atrophy is associated with MS clinical disability.44 In a
longitudinal study, Chen et al45 showed an increased rate of
cortical tissue loss in patients with progressing disability in
comparison with those with stable disease. Fisher et al46 com-
pared atrophy rates for 4 years across the main MS clinical
phenotypes and found that GM atrophy rate increases with
disease stage, from 3.4-fold normal in patients with CIS con-
verting to RRMS to 14-fold normal in those with SPMS. Neo-
cortical volume loss was found to occur in patients with RRMS
with even mild cognitive disturbances.47,48

Imaging the Topographic Distribution of GM Damage
Several strategies have been used to characterize the distribu-
tion of abnormalities in the different GM structures, including
voxel-wise approaches or region-of-interest analysis to deter-
mine GM damage to specific structures, such as the basal gan-
glia and the spinal cord.

With voxel-based morphometry, patterns of regional dis-
tribution of GM loss have been identified in all the major MS
clinical phenotypes. In patients with CIS, GM atrophy in-
volves the thalamus, hypothalamus, putamen, and caudate
nucleus.49 Cortical atrophy in patients with RRMS affects
preferentially the frontotemporal lobes,50,51 and GM volume
reduction in these regions during 1 year is correlated with WM
lesion progression.51 Ceccarelli et al52 showed that GM tissue
damage follows different patterns of regional distribution ac-
cording to the clinical phenotype of the disease (Fig 2), is likely
secondary to the presence and location of focal WM lesions,
and is more evident in the progressive forms of the disease. In
patients with early PPMS, atrophy involves the thalami in an
early phase and extends to other deep and infratentorial GM
areas after 1 year.53 Pediatric patients with MS experience GM
atrophy in the thalamus only.54

The evaluation of the regional patterns of GM involvement
has undoubtedly improved the correlation with disease clini-
cal manifestations. In patients with CIS, voxel-wise correla-
tions with clinical measures showed that cerebellar volume is
associated with the severity of cerebellar function impairment
and the Multiple Sclerosis Functional Composite score.49 In
patients with RRMS, reduction of GM volume of regions as-
sociated with working memory and executive function perfor-
mance is correlated with cognitive task performance.55 In pa-
tients with RRMS and SPMS, temporal lobe atrophy is
associated with auditory/verbal memory and visual/spatial
memory performance,56 while hippocampal atrophy is related
to a poor performance in memory-encoding tasks.57 Fatigued
patients with MS experience GM atrophy in frontal regions,58

while those with cerebellar dysfunction have a reduced cere-
bellar GM volume compared with those without.59 In patients
with MS with longstanding disease or severe disability, focal
thinning of the primary SMC has been reported.60 Compared
with controls, patients with benign MS have a reduced GM
volume in the subcortical and frontoparietal regions, and in
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comparison with patients with benign MS, those with SPMS
have a significant cerebellar GM loss.61

Voxel-based analysis may also represent a valid option for
the analysis of MT MR imaging and DTI data. With this ap-
proach, MTR decrease in the basal ganglia was found in pa-
tients with early MS.62 On the other hand, in a region-of-
interest-based study63 that assessed thalamic MTR in patients
with early RRMS, no significant difference was observed at
baseline between patients and controls. After 1 and 2 years,
however, the mean thalamic MTR worsened significantly in

patients.63 Patients with CIS with optic neuritis had decreased
MTR in the occipital cortices.64

With a voxel-based approach, a significant correlation was
found in PPMS between a regional decrease of MTR values of
cortical areas of the motor network and the EDSS scores as
well as between MTR values in cortical areas of the cognitive
network and the Paced Auditory Serial Addition Test scores.65

Ceccarelli et al66 showed DTI abnormalities in brain areas as-
sociated with motor and cognitive functions in PPMS (Fig 3).
Bodini et al67 found 11 brain regions with an anatomic corre-

Fig 2. SPM regions with decreased GM concentration, overlaid on a high-resolution T1-weighted image, contrasting patients with different MS phenotypes. A and B, SPM regions with
GM loss in patients with SPMS compared with those with RRMS. C and D, SPM regions with GM loss in patients with SPMS compared with those with PPMS. Reprinted from Neuroimage,
42, Ceccarelli A et al, A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes, 315–22, 2008, with permission from Elsevier.

Fig 3. SPM regions with anatomic correspondence between GM atrophy (blue) and GM mean diffusivity (red) changes in patients with PPMS compared with controls. A and B, An overlap
is visible in the thalami. Reprinted with permission from Ceccarelli et al, 2009.66
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spondence between reduced NAWM FA values and GM atro-
phy in patients with early PPMS.

1H-MR spectroscopy studies have reported a reduction of
NAA in the cervical cord of patients with MS.68 Patients with
RRMS have a lower cervical cord GM average MTR compared
with controls.69 Most interesting, GM average MTR of the
cervical cord was correlated with the degree of disability.69

Cortical Reorganization
Studies with fMRI and different paradigms have consistently
demonstrated functional cortical changes in all MS pheno-
types, suggesting that there might be a “natural history” of the
functional reorganization of the cerebral cortex in patients
with MS.4 Such a notion is supported by the results of a cross-
sectional study of the motor network in patients with different
disease clinical phenotypes,70 which showed, at the beginning
of the disease, an increased recruitment of those areas “nor-
mally” devoted to the performance of a given task, such as the
SMC and the SMA. At a later stage, bilateral activation of these
regions was first seen, followed by a widespread recruitment of
additional areas, which are usually recruited in healthy indi-
viduals to perform novel/complex tasks.

Several moderate-to-strong correlations have been dem-
onstrated between the activity of cortical and subcortical areas
of different cerebral networks and the extent of brain T2-vis-
ible lesions and the severity of their intrinsic damage.4 In ad-
dition, movement- and cognitive-associated fMRI changes
were found to be correlated with the amount of NAWM, GM,
and cervical cord injury.4 Although the role of cortical reorga-
nization on the clinical manifestations of MS remains to be
established, such correlations suggest that an increased re-
cruitment of “critical” cortical networks might contribute to
limiting the functional impact of MS-related damage. This
hypothesis is supported by the results of a longitudinal study
that assessed cortical changes following acute motor relapses
secondary to pseudotumoral lesions in 12 patients with MS.71

Short-term cortical changes were characterized by the recruit-
ment of pathways in the unaffected hemisphere. A recovery of
function of the primary SMC of the affected hemisphere was
found in patients with good clinical improvement, while pa-
tients without or only a poor clinical recovery showed a per-
sistent recruitment of the primary SMC of the unaffected
hemisphere.

An increased cortical activation might not always be bene-

Fig 4. A and B, Cortical activations on a rendered brain from healthy controls (A) and patients with MS (B) from 8 European centers during the performance of a simple motor task with
the right hand. Compared with controls, patients with MS had more significant activations bilaterally in several regions of the sensorimotor network. C, A dynamic causal model shows
the results of the between-group analysis of effective connectivity. Increased strength of the connections in patients versus controls is reported as continuous black lines, whereas reduced
strength of the connections in patients versus controls is reported as dotted black lines. Reprinted with permission from Rocca et al, 2009.81
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ficial for patients with MS. In PPMS, the lack or exhaustion of
the classic adaptive mechanisms might be among the factors
responsible for an unfavorable clinical evolution.72 In patients
with cognitive decline,73 a “reallocation” of neuronal re-
sources and the inefficiency of neuronal processes have been
described. Finally, in patients with RRMS, an increased
recruitment of several areas of the motor network, including
the thalamus and the cingulum, has been described when pa-
tients complained of fatigue after weekly interferon �-1a
administration.74

Monitoring Treatment Efficacy
MR imaging quantities are applied as surrogate outcome mea-
sures in treatment trials of MS because they are noninvasive,
have high sensitivity toward disease activity, and are very reli-
able.75 Despite the fact that lesion activity and burden on post-
contrast T1-weighted and dual-echo scans are the most com-
monly used measures to monitor treatment efficacy in MS
trials, a recent pivotal study found a significant effect of pio-
glitazone in slowing GM atrophy accumulation during 1 year
in patients with RRMS.76

DIR sequences have not yet been tested in the setting of
clinical trials of MS, perhaps because they still need to be val-
idated and standardized across different centers. On the other
hand, several MS trials have incorporated MT MR imaging
quantities as additional outcome measures. Two multicenter
studies used MT MR imaging to determine GM damage in
CIS77 and in patients with PPMS.24 In both studies, GM MTR-
derived measures showed a significant intercenter heterogene-
ity. After correcting for the acquisition center, the researchers
found pooled GM average MTR values to be different between
patient groups and controls.

One study used 1H-MR spectroscopy to assess the efficacy
of glatiramer acetate in patients with PPMS.78 At 3-year fol-
low-up,79 no significant difference in metabolite ratios be-
tween treated and placebo patients was found in lesions,
NAWM, and GM.

Only recently has the potential of fMRI in prospective mul-
ticenter studies been studied in an international collaborative
effort.80 Compared with controls, patients with MS had more
significant activations bilaterally in several regions of the sen-
sorimotor network and abnormalities of effective connectivity
(Fig 4) during the performance of a simple motor task.81

Conclusions
The application of quantitative MR imaging�based tech-
niques has shown consistently that GM is not spared by MS
and that GM damage, albeit with different patterns of regional
distribution, is present in all MS phenotypes since the earliest
clinical stages of the disease, affects various GM compart-
ments, and is associated with the main clinical manifestations
of MS. Several factors likely contribute to the GM damage of
MS, including focal macroscopic lesions, intrinsic “diffuse”
changes, and irreversible tissue loss. All of these abnormalities
increase with time and are only partially associated with the
extent of WM pathology. More recently, variable degrees of
cortical plasticity with the potential to limit the functional
consequences of tissue damage have been shown in patients
with MS, suggesting that their disability is likely to result from
the balance between structural damage and cortical reorgani-

zation, rather then being a mere reflection of tissue disruption.
Measuring GM MR imaging variables might, therefore, be a
rewarding exercise for improving our understanding of MS
pathobiology, which might result, in the future, in the identi-
fication of additional markers to monitor disease evolution,
either natural or modified by treatment.
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