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Commentary

Normal Pressure Hydrocephalus: New Concepts on Etiology and Diagnosis

William G. Bradley, M.D., Ph.D.

Normal pressure hydrocephalus (NPH) is re-
markable for two reasons: 1) it is one of the few
treatable causes of dementia, and 2) neuroradiolo-
gists are usually involved in making the diagnosis.
Hakim and Adams (1) are generally credited with
the initial description of NPH, although it may ac-
tually have been described under a different name
earlier by McHugh (2). It consists of the clinical
triad of gait disturbance, dementia, and inconti-
nence in a patient who radiographically has com-
municating hydrocephalus, ie, ventricles dilated out
of proportion to any sulcal enlargement (which dis-
tinguishes it from atrophy) (3).

Over the 35 years since it was first described, the
definition of NPH has been expanded. Initially it
was considered to be idiopathic (4, 5); at present,
common usage includes any form of chronic, com-
municating hydrocephalus (6, 7), and even a few
noncommunicating forms such as aqueductal ste-
nosis (8). Because all these patients may present
with a similar clinical triad, and they may all be
treated with a ventriculoperitoneal (VP) shunt, this
expansion of the definition is probably appropriate,
although certain secondary features distinguish the
idiopathic form from communicating hydrocepha-
lus with known causes. For example, the idiopathic
form of NPH tends to present in the elderly (9),
whereas patients with chronic communicating hy-
drocephalus from prior subarachnoid hemorrhage,
meningitis, neurosurgery, or head trauma tend to
present at an earlier age. Also, response to shunting
seems to be worse (30–50%) for patients with the
idiopathic form than for patients with a known
cause of communicating hydrocephalus (50–70%)
(10–12). Depending on the specific diagnostic cri-
teria used, one half of the cases of NPH are con-
sidered to be idiopathic and one half result from a
known insult; thus, NPH probably represents the
final common pathway for a number of different
disease processes (13–15).

The symptom complex of NPH has been ex-
plained on the basis of both mechanical (16) and
ischemic factors (17–21). It has been suggested that
the ventricular enlargement leads to vascular
stretching (22), and the decreased compliance (23)
and high pulse pressure leads to local ‘‘barotrau-
ma’’ (20) or ‘‘tangential shear stress’’ (16). It has
been postulated that the purpose of the shunt is to
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add additional capacitance to the system (24), in-
creasing perfusion (22), not to decrease the pres-
sure (which is already normal).

The gait disturbance is a gait ‘‘apraxia’’ and rep-
resents a combination of motor deficits, failure of
postural righting reflexes, abnormal smooth pursuit,
and failed suppression of vestibuloocular reflexes
(13, 25). The gait has been described as ‘‘mag-
netic’’ because of the wide stance and slow, small
steps with reduced floor clearance (13, 26). There
is increased tone and brisk tendon reflexes in the
lower limbs, and absence of weakness or incoor-
dination (26). Impaired input from the sensorimotor
cortex, the superior frontal cortex, and the anterior
cingulate gyrus to the reticular formation in the teg-
mentum of the brain stem may also contribute to
the gait and stance disorder (26, 27). Since the fi-
bers of the corticospinal tract that supply motor
function to the legs pass closest to the lateral ven-
tricles in the corona radiata, it is not surprising that
the gait disturbance is usually the first symptom to
appear and the first one to resolve following suc-
cessful VP shunting (28).

Problems with urinary functions begin with feel-
ings of urgency, and in the later stages, develop
into frank disinhibition (13). This may initially be
due to involvement of the sacral fibers of the cor-
ticospinal tract (29), and later may be a feature of
the dementia (13).

The dementia is subcortical (30, 31) and is char-
acterized by inertia, forgetfulness, and poor exec-
utive function (13). The lack of cortical features
helps to distinguish the dementia of NPH clinically
from that of Alzheimer’s disease. A number of
groups have noticed an increased incidence of sub-
cortical, deep white matter hyperintensities on T2-
weighted MR images (20, 32–34). That these rep-
resent small vessel ischemia is further substantiated
by the finding of decreased cerebral blood flow
(CBF) (35–43), which generally improves after
shunting (38).

The acetazolamide challenge test, which nor-
mally increases CBF, fails to do so in NPH patients,
particularly in the periventricular white matter (44).
This lack of the usual vasomotor response to car-
bonic anhydrase inhibitors (or to inhaled CO2)
probably indicates that the arterioles are already
maximally dilated as a result of local ischemia (40).
After CSF diversion, CBF in white matter generally
improves, as does the response to acetazolamide
(40). In addition to shedding some light on the role
of autoregulation on the pathogenesis of the de-
mentia of NPH, the acetazolamide challenge test
has also been used to select patients for shunting
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(40, 44, 45). In this setting, the patients that have
the best response to VP shunting have preoperative
CBF above 20 mL/100 g/min (40).

The etiology of idiopathic NPH has been con-
sidered by many over almost 4 decades; however,
no single theory has gained widespread acceptance.
Ventricular enlargement can occur when the trans-
mantle pressure (5), ie, the difference in pressure
between the ventricles and the subarachnoid space,
is increased (46), even temporarily (16, 47–51).
Decreased CSF resorption increases transmantle
pressure (16). CSF resorption in NPH is definitely
abnormal, as shown by the saline infusion test (52).
While many consider that CSF resorption occurs at
the level of the arachnoidal villi (microscopic) or
arachnoid granulations (macroscopic), other au-
thorities feel that a substantial amount of CSF re-
sorption occurs at the brain parenchymal level, ie,
the transcapillary or transvenular level (53–56).
(This is the reason that patients with obstructive
hydrocephalus can resorb at least some CSF [53].)
The fact that histologic analysis of the leptomenin-
ges in idiopathic NPH fails to show fibrosis sug-
gests upstream obstruction (57, 58) and lends cre-
dence to the increased venous resistance theory.

The theory proposed by Bateman in this issue of
the AJNR (page 1574) suggests that increased
transvenular resistance in the territory of the su-
perior sagittal sinus is the initiating event in NPH.
Since this could lead to ventricular enlargement
and decreased blood supply in the same territory,
it is an enticing theory—it encompasses the two
major abnormalities in NPH. Dr. Bateman goes on
to propose a test for diagnosing NPH based on
quantitative measurements of the inflowing carotid
or basilar arteries and the outflowing superior sag-
ittal or straight sinus. Specifically, he suggests that
the net systolic pulse volume and the temporal dif-
ference in the arterial and venous peaks are diag-
nostic of NPH. I have several problems with his
methodology, particularly the use of prospective
cardiac gating (which fails to sample the end of the
cardiac cycle) (59) and scaling of arterial flow (ei-
ther carotid or basilar) to match venous outflow (ei-
ther in the superior sagittal sinus or straight sinus).
I am also concerned about the small number of
patients, the lack of blinding, and the use of normal
controls almost 20 years younger than the NPH
group. Regardless, if the same results could be re-
produced with retrospective cardiac gating, if all
blood flowing in and out of the brain were mea-
sured, and if this new test were performed on a
larger number of both shunt-responsive and non-
shunt-responsive NPH patients, then perhaps Dr.
Bateman may be proven correct.

Over the years, a number of diverse tests have
been used to select symptomatic NPH patients for
VP shunting. Some tests are performed by radiol-
ogists, and some by neurologists or neurosurgeons.
Nuclear or CT cisternography shows ventricular re-
flux with slow cortical uptake (60). Although this
test reveals disordered CSF resorption at the level

of the arachnoid villi, it is insensitive to increased
upstream resistance at the level of the veins. Thus,
while cisternography may have a role in diagnosing
known causes of communicating hydrocephalus, it
is less useful for diagnosing idiopathic NPH. In ad-
dition, it cannot predict shunt response because the
patients may already have developed atrophy (20).
Thus, a positive cisternogram coupled to a nuclear
or Xenon CT study that shows normal CBF is
much more successful than cisternography alone in
predicting which patients will respond positively to
shunting (61).

Lumbar puncture and removal of 50 mL of CSF
(‘‘tap test’’) has been used extensively (62–65), al-
though some (66) have doubted its accuracy for
predicting the outcome from shunting. Recently, a
ventricular tap test has shown much greater sensi-
tivity and specificity in selecting which patients
will respond to shunting, not surprising given that
the test comes closest to simulating the actual VP
shunt (9). Pressure monitoring via an intracranial
transducer should show normal mean baseline pres-
sure (hence the name) with transient elevations of
mean and pulse pressure known as ‘‘plateau’’ or
‘‘B’’ waves. B waves occurring during more than
50% of the monitoring period (47, 48, 67–69) are
associated with a greater likelihood of successful
response to shunting. B waves may also be the
cause of ventricular enlargement (54). Unfortunate-
ly, B waves may not be present during the moni-
toring period, decreasing their sensitivity as a test
to diagnose NPH. Saline infusion with pressure
monitoring has been used to reveal decreased CSF
resorptive capacity (51, 52). Obviously, such tests
are invasive and run the risk of infection.

Fifteen years ago, a number of investigators not-
ed an increased aqueductal CSF flow void on the
MR images of patients with communicating hydro-
cephalus (33, 70–72). In patients with clinical
NPH, the extent of the flow void on proton densi-
ty–weighted, non-flow-compensated, conventional
spin-echo images has been highly correlated with
a favorable response to CSF diversion (73, 74).
Subsequent attempts to evaluate the CSF flow void
on fast spin-echo images have failed (75, 76) (as
might be expected due to the rephasing effects of
the multiple 1808 pulses). More recently, the vol-
ume of CSF pulsating back and forth through the
aqueduct during systole or diastole (the ‘‘aque-
ductal CSF stroke volume’’) has been measured us-
ing phase-contrast MR imaging (77). Increased
flow has been shown to correlate with a favorable
response to shunting (77–80). In one report of
shunt-responsive NPH patients with elevated
aqueductal CSF stroke volumes, the CSF flow void
was increased in only 50% of the conventional pro-
ton density–weighted images that had been per-
formed with flow compensation. Thus, the impor-
tant finding was that of hyperdynamic CSF flow,
not of a prominent flow void per se. Hyperdynamic
CSF flow is thus an indirect, but easily measured,
sign of normal CBF and shunt-responsive NPH.
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Normal or reduced aqueductal CSF flow indicates
that CBF is reduced, atrophy is present, and there
is a decreased likelihood of shunt response.

In my institution, if the patient has symptoms of
NPH, a routine MR scan using conventional (not
fast) spin echo is performed. If a prominent aque-
ductal CSF flow void is present, the patient is con-
sidered for shunting. (We have not seen a false-
positive result on flow-compensated proton
density–weighted conventional spin-echo images.)
If the CSF flow void is normal, the patient under-
goes a quantitative MR phase-contrast CSF flow
study and, if positive, is considered for shunting.
In my experience it is exceedingly unusual for a
patient with hyperdynamic CSF flow not to respond
positively to shunting (77). Using this algorithm,
we have performed 100 quantitative CSF flow stud-
ies each year for the last 8 years for institutions
throughout southern California.

The hypothesis that NPH is primarily a disease
of increased venous resistance is interesting, but
one might now ask, ‘‘What causes the previously
normal venous resistance to become elevated in el-
derly patients?’’ I believe one could make a case
for deep white matter ischemia being the initiating
event. It is well known that NPH patients have a
higher incidence of periventricular hyperintensities,
ie, small vessel ischemic changes, than age-
matched control subjects (17–21, 32, 34). Further-
more, it is known that the damage is more diffuse
than that seen on T2-weighted MR images because
the magnetization transfer ratio is decreased (81)
(indicating loss of myelin protein) and the apparent
diffusion coefficient is increased (82) (indicating
increased interstial edema) in patients with normal-
appearing white matter. Because the white matter
is ischemic, the arteries are already maximally di-
lated, explaining the loss of autoregulation and lack
of response to acetazolamide.

When the arterioles occlude, the draining ve-
nules close as well. Whereas this maintains the in-
flow-outflow balance for blood, the CSF normally
drained by these parenchymal veins begins to back
up until a new pathway can be found. According
to the Monroe-Kellie doctrine, such a process
might be expected to cause a transient elevation of
intracranial pressure, ie, B waves. Because CSF is
made by the choroid plexus within the ventricles,
occluded venous drainage will lead to a transient
increase in intraventricular pressure, resulting in
ventricular enlargement.

The VP shunt may be effective for a number of
reasons. For one, it may take up a greater propor-
tion of CSF, taking the pressure off the parenchy-
mal absorption route at the point of production
within the ventricles. For another, it provides ad-
ditional capacitance. If the VP shunt modulates the
pulse pressure, there will be decreased interstitial
edema, decreased interstitial pressure, improved
perfusion, and decreased ischemia. (This may be
the reason that third ventriculostomy has been ef-
fective in some patients with NPH [83].) The fact

that patients with idiopathic NPH respond less fre-
quently and more transiently to shunting than pa-
tients with known causes of communicating hydro-
cephalus (84) may be because small vessel
arteriosclerosis is a steadily progressive disease. At
some point, the shunt is no longer able to make up
for the lack of parenchymal CSF drainage. Patients
with the most severe white matter disease (85), or
those with the lowest CBF (41, 43), probably do
not respond to shunting because irreversible atro-
phy has already occurred.

A better understanding of the pathophysiology of
NPH will undoubtedly lead to better patient selec-
tion and treatment. Bateman’s article gives us new
insights into the possible etiology of this compli-
cated disease. I hope this will stimulate larger stud-
ies comparing MR-based tests of vascular compli-
ance and aqueductal CSF stroke volume to the
more invasive tap tests and intracranial pressure
monitoring to best determine which patients will
respond positively to shunting for NPH.
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