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Effect of Voxel Position on Single-Voxel MR
Spectroscopy Findings

Peter E. Ricci, Alan Pitt, Paul J. Keller, Stephen W. Coons, and Joseph E. Heiserman

BACKGROUND AND PURPOSE: Single-voxel MR spectroscopy is a widely used tool for
evaluating brain tumors. Although extensive data are available on the MR spectral appearance
of tumors, less is known about the effect of voxel position on the accuracy of single-voxel MR
spectroscopy findings. The purpose of this study was to test the hypothesis that the accuracy
of single-voxel MR spectroscopy in the categorization of lesions as either tumor or not tumor
is dependent on voxel position.

METHODS: Fifty single-voxel MR spectra acquired with a fully automated stimulated-echo
spectroscopy sequence were reviewed retrospectively in 43 patients with new or previously
treated intra-axial brain tumors. Spectra were analyzed for the presence of choline, creatine,
N-acetylaspartate (NAA), and lipid/lactate. Choline/creatine and NAA/creatine peak area ratios
were assessed qualitatively. Lesions were grouped into one of three categories on the basis of
spectral pattern: tumor, not tumor, or indeterminate. Results of MR spectroscopy were com-
pared with the final histopathologic diagnosis.

RESULTS: Histologic confirmation was obtained in 19 patients; MR spectra were interpret-
able in 17 of those. MR spectra correctly categorized nine of 17 lesions (six tumor, three
nontumor). All eight misdiagnosed lesions were tumors. When the MR spectroscopy voxel
included the enhancing edge of the lesion, the spectra correctly categorized seven of eight lesions
(four of five tumors and all three cases of radiation necrosis). When the MR spectroscopy voxel
was positioned centrally within the lesion, the spectra correctly reflected histologic outcome in
two of nine lesions (all tumors).

CONCLUSION: The reliability of single-voxel MR spectroscopy findings is dependent on
voxel position. Spectra obtained from voxels at the enhancing edge of a tumor more accurately
reflect lesion histopathology than do spectra obtained from the lesion center, even if the cen-
trally placed voxels contain solidly enhancing tissue.

Hydrogen proton MR spectroscopy is a powerful
technique that has been used to noninvasively eval-
uate tissue metabolism in a wide variety of diffuse
and focal CNS diseases. Brain tumors (1–15), ab-
scesses (10, 16, 17), metabolic and neurodegener-
ative diseases (11, 18–20), focal lesions in AIDS
patients (11, 21, 22), and more have been studied
extensively. MR spectroscopy has also been used to
evaluate the efficacy of brain tumor therapy and to
evaluate radiotherapy-induced changes (11, 23–33).
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In general, proton spectroscopy has two forms:
single-voxel MR spectroscopy and MR spectro-
scopic imaging. MR spectroscopic imaging, the
more technically advanced technique, acquires
spectra from numerous small voxels covering a
large area of the brain. The small voxel size min-
imizes the effects of volume averaging, while the
large volume of coverage ensures that heteroge-
neous lesions are adequately sampled. However,
because of the complex shimming, long acquisition
times, and complicated data processing, MR spec-
troscopic imaging has been largely confined to re-
search centers with dedicated spectroscopists. In
contrast, single-voxel MR spectroscopy acquisition
and processing are typically fully automated; for
that reason, it is simpler to implement and easier
to use than MR spectroscopic imaging. These fac-
tors, and a substantially shorter scan time than that
of MR spectroscopic imaging, have resulted in
more widespread use of single-voxel MR spectros-
copy at both research and clinical MR centers.
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TABLE 1: Summary of MR spectroscopy findings and histologic
results

MR Spectroscopy
Interpretation

Histologic Diagnosis

Tumor Necrosis Total

Tumor 6 0 6
No tumor 7 3 10
Indeterminate 1 0 1

Total 14 3 17

TABLE 2: Summary of MR spectroscopy and histologic results by
voxel location

No.

No. (%) of
Correct

MR Spec-
troscopy
Findings

No. (%) of
Incorrect

MR Spec-
troscopy
Findings

Voxel at edge (n 5 8) 7 (88) 1 (12)
Tumor 5 4 (80) 1 (20)
Nontumor 3 3 (100) 0

Voxel in center/cavity (n 5 9) 2 (22) 7 (78)
Tumor 9 2 (22) 7 (78)
Nontumor 0 0 0

Unfortunately, the limited coverage of a lesion
afforded by the use of one voxel and the volume
averaging that results from the relatively large vox-
el size make single-voxel MR spectroscopy less de-
sirable than MR spectroscopic imaging for the
study of histologically heterogeneous lesions, as
primary malignant gliomas typically are (34, 35).
Placement of a voxel in a low grade or frankly
malignant or necrotic region of the tumor may
yield distinctly different MR spectroscopy results.
Treated brain tumors are equally heterogeneous his-
tologically and as such are prone to the same voxel
position and volume averaging problems.

Despite the wealth of information available on
the MR spectral appearance of tumors and radio-
therapy-induced changes, little is known about the
effect of voxel position on the accuracy of single-
voxel MR spectroscopy results when evaluating
such histologically heterogeneous lesions. The pur-
pose of this study was to test the hypothesis that
the accuracy of single-voxel MR spectroscopy in
the categorization of lesions as either tumor or not
tumor is dependent on voxel position.

Methods
We retrospectively reviewed 50 consecutive MR imaging

and single-voxel proton MR spectroscopy studies in 43 pa-
tients with intra-axial brain tumors referred for imaging over
an 8-month period by the neuro-oncology and neurosurgery
services. From that population, 19 patients met the following
inclusion criteria: presence of a new or previously treated intra-
axial brain tumor, subsequent histologic confirmation of the
MR spectroscopy findings by either open biopsy or surgical
resection, and inclusion of the region studied by MR spectros-
copy in the portion of the lesion that was resected or from
which a biopsy sample was obtained.

All MR studies were performed on a commercially available
1.5-T unit. Conventional MR imaging performed before MR
spectroscopy included sagittal T1-weighted (700/16 [TR/TE]),
axial T1-weighted (800/18), and dual-echo T2-weighted (2500/
30,90) spin-echo images, all with one excitation and a matrix
size of 256 3 192. An axial fast fluid-attenuated inversion-
recovery sequence (3300/110; inversion time, 1420) with two
excitations and a matrix size of 256 3 192 was also performed.
Sagittal and axial T1-weighted imaging was repeated after in-
travenous administration of 0.1 mmol/kg of gadodiamide (Om-
niscan, Nycomed, New York, NY).

MR spectroscopy studies were performed with the fully au-
tomated Proton Brain Exam-Single Voxel (PROBE-SV) soft-
ware package (GE Medical Systems, Milwaukee, WI). No ad-
ditional gradient shimming or water suppression was used
other than that normally used during the automated prescan
mode. To increase the probability of including the more his-
tologically aggressive portions of the lesion and to minimize
the volume of nontumor tissue in the voxel, all MR spectros-
copy voxels were placed in an enhancing portion of the lesion,
as identified on enhanced T1-weighted images. Spectra were
acquired in the stimulated-echo acquisition mode (STEAM)
with the following parameters: 1500/30; mixing time, 13.7 mil-
liseconds; 192 signal averages. The short TE was selected to
maximize detection of lipid breakdown products, which have
short T1 and T2 relaxation times. Voxel volumes ranged from
4 to 8 cm3. Total acquisition time was 5 minutes 40 seconds.

Two neuroradiologists evaluated each spectrum for the pres-
ence of choline (Cho)-containing compounds, total creatine
(Cr), N-acetyl compounds (NAA), lipids, and lactate. Spectra

obtained with an identical STEAM sequence from healthy vol-
unteers and from the contralateral normal hemisphere in sev-
eral patients were used for comparison. Using a qualitative
pattern-recognition approach and the following guidelines,
spectra were placed into one of three categories: tumor, not
tumor, or indeterminate. Spectra characterized by elevation of
Cho/Cr ratio above 2:1 and with reduction of NAA were con-
sidered consistent with tumor. Marked reduction (or complete
absence) of Cho, Cr, and NAA levels in combination with a
large lipid/lactate peak was considered compatible with tissue
necrosis/no viable tumor. All other spectral patterns were con-
sidered indeterminate for the purposes of this study. Such qual-
itative evaluation of the spectra was based on results of pre-
vious studies that have applied a variety of pattern-recognition
techniques to the analysis of tumor spectra (8, 13, 36–38). In
several of those studies, investigators concluded that normal
and abnormal spectra can be distinguished by means of pattern
recognition alone (8, 13, 37).

Results
Nineteen patients met the inclusion criteria out-

lined above. In two patients with surgically proved
radiation necrosis, the spectra were considered un-
interpretable because of either failed water sup-
pression or high background noise. Both were
eliminated from the subsequent analysis. The study
population therefore consisted of 17 patients (eight
women, nine men) with new (n 5 11) or previously
treated (n 5 6) brain tumors. Average age was 55
years (range, 42 to 70 years). Results are summa-
rized in Tables 1 and 2.

Overall, nine (53%) of the 17 lesions were cor-
rectly diagnosed by means of MR spectroscopy, in-
cluding six (43%) of 14 tumors and three (100%)
of three cases of radiation necrosis (Table 1). Eight
(47%) of the 17 lesions were incorrectly catego-
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FIG 1. Patient 20: 60-year-old woman with no significant medical history.
A, Axial enhanced T1-weighted MR image reveals focal enhancement in the left cerebral peduncle and thalamus. Spectroscopy voxel

is placed at the anterior margin of enhancement.
B, MR spectrum reveals elevation of the Cho/Cr ratio, elevation of the lipid/lactate peak, and marked reduction of NAA. The pattern

was interpreted as consistent with tumor and was proved to be a glioblastoma multiforme at biopsy.

rized on the basis of MR spectroscopy. All were
pathologically proved tumors (four primary and
two recurrent glioblastomas, one primary anaplas-
tic astrocytoma, and one metastasis). Six of the
eight incorrectly categorized lesions were surgical-
ly resected; biopsies were performed in two.

The MR spectroscopy pattern in six of the 17
lesions was interpreted as consistent with tumor; all
six lesions (100%) were histologically proved to be
tumor (Table 1 and Fig 1). Five of those were new,
untreated lesions; one was a recurrent ganglioglioma.

In 11 lesions, the MR spectroscopy pattern was
interpreted as consistent with no viable tumor/ne-
crosis (n 5 10) or as indeterminate (n 5 1). Three
(27%) of those 11 lesions were histopathologically
confirmed to be radiation necrosis with no evidence
of viable tumor (Fig 2). The remaining eight le-
sions were all histologically confirmed tumors (five
primary and two recurrent gliomas, one metasta-
sis). In seven of those eight incorrectly categorized
cases, the MR spectroscopy pattern was considered
consistent with frank tissue necrosis (Figs 3 and 4).
In the eighth, a histopathologically proved anaplas-
tic astrocytoma, the NAA/Cr ratio was slightly de-
creased but the Cho/Cr ratio was normal. Because
this spectral pattern did not meet our criteria for
either the tumor or not tumor categories, it was
considered indeterminate.

Data were then subdivided by the location of the
spectroscopy voxel with respect to the enhancing
lesion. In eight cases (five tumor, three radiation
necrosis), the voxel included the edge of the en-
hancing lesion. Seven (88%) of those eight lesions

were correctly categorized with MR spectroscopy
(Table 2). This group included four glial tumors
and three cases of radiation necrosis (Figs 1 and 2).
The only lesion incorrectly categorized by MR
spectroscopy when the voxel included the enhancing
edge of the lesion was a solitary metastasis (Fig 5).

In nine lesions (all histopathologically confirmed
tumors), the spectroscopy voxel was either posi-
tioned in the center of an enhancing lesion (n 5 7)
or included a substantial portion of a cavitary/ne-
crotic region of the tumor (n 5 2) (Figs 3 and 4).
Lesion categorization was correct in only two
(22%) of those nine lesions. The seven misdiag-
nosed lesions included five primary and two recur-
rent malignant gliomas.

Discussion
The ability to provide information on tissue me-

tabolism has made single-voxel MR spectroscopy
a valuable tool for evaluating brain tumors (both
newly diagnosed and previously treated) and for
assessing the efficacy of brain tumor therapy (1, 5–
7, 12, 25). Typical MR spectroscopy changes in
CNS tumors include elevated levels of choline-con-
taining compounds (Cho, phosphorylcholine, and
glycerophosphorylcholine), decreased levels of
both N-acetyl compounds (mostly NAA) and total
Cr, and variable amounts of both lipid and lactate
(1–5). The key feature of tumors is elevation of the
Cho peak (with a resultant increase in the Cho/Cr
ratio), which most likely arises from enhanced pro-
duction and destruction of cell membranes (11, 39–
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FIG 2. Patient 2: 48-year-old woman with a history of a glioblastoma multiforme treated with surgery, external beam radiation (59 Gy),
and interstitial brachytherapy (58 Gy).

A, Axial T1-weighted MR image reveals enhancement of a right frontal lobe/insular lesion that has both solid and cavitary components.
The spectroscopy voxel includes the medial margin of enhancement.

B, MR spectrum shows a prominent lipid/lactate peak with minimal residual Cho and Cr; NAA is absent. The pattern was thought to
be consistent with radiation necrosis, and this diagnosis was confirmed at resection. This patient had subsequent follow-up spectroscopy
studies at 1, 3, and 4 months that were unchanged (not shown).

FIG 3. Patient 25: 58-year-old man with a new right frontal lobe mass.
A, Axial T1-weighted MR image reveals a multilobular cystic and solid mass in the right frontal lobe that contains peripheral and

central enhancing regions. The spectroscopy voxel is positioned centrally in an enhancing portion of the tumor and does not include
the enhancing edge.

B, MR spectrum reveals absence of discernible Cho, Cr, and NAA. The pattern was thought to be consistent with no tumor. The
lesion was histologically shown to be a glioblastoma multiforme after resection.
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FIG 4. Patient 11: 68-year-old man with a history of a malignant glioma treated with surgical resection, external beam radiation (60
Gy), and interstitial brachytherapy (56 Gy) locally to the tumor bed.

A, Axial T1-weighted MR image obtained 8 weeks after radiation shows an enhancing mass in the right temporal lobe. There is no
obvious cavitation/necrosis. The MR spectroscopy voxel is centrally positioned within the enhancing lesion.

B, The MR spectral pattern of a large lipid-lactate peak centered at 1.3 ppm and the absence of discernible Cho, Cr, or NAA were
interpreted as consistent with no evidence of tumor. The lesion was completely resected and shown to be an equal mixture of glioblas-
toma and necrotic tissue. Because of the presence of a significant tumor component, the MR spectroscopy study was considered
incorrect.

FIG 5. Patient 22: 61-year-old man with no significant medical history.
A, Axial enhanced T1-weighted MR image reveals a cystic and solid mass at the right paramedian parieto-occipital junction. The

spectroscopy voxel includes the medial and posterior enhancing margins of the lesion.
B, The spectral pattern of a large lipid-lactate peak, markedly reduced Cho, and absent Cr and NAA was interpreted as consistent

with no evidence of tumor. The lesion was completely resected and shown to be a solitary metastasis.
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41). In contrast, radiation therapy typically results
in regions of frank tissue necrosis surrounded by
areas of diminished cellularity and slowed cellular
proliferation (42). Spectroscopically, irradiated nor-
mal brain and tumor tissue are characterized by a
decrease in the NAA level and variable changes in
Cho, Cr, lipid, and lactate levels (23–26, 30–33).
In cases of frank tissue or tumor necrosis, a prom-
inent broad-based peak is often seen in the 1.2- to
1.3-ppm range. This peak, which represents a com-
bination of lipid breakdown products and lactate,
has been referred to as a ‘‘death peak’’ (29).

Unfortunately, histologic heterogeneity of both
treated and untreated tumors creates the potential
for sampling errors when the single-voxel tech-
nique is used. Similar biopsy sampling problems
are a well-known cause for misclassification of
brain tumors histologically (43–45). Our results
confirm that voxel placement is a critically impor-
tant factor in the reliability of MR spectra acquired
with a single-voxel technique. Overall, pattern
analysis of the MR spectra correctly classified only
nine (53%) of 17 lesions as either tumor or not
tumor. However, when the spectroscopy voxel in-
cluded the margin of an enhancing lesion, pattern
analysis of the spectra correctly categorized seven
(88%) of eight lesions; the only misdiagnosis was
a solitary metastasis. Because this was the only
metastatic lesion in the study population, no mean-
ingful assessment regarding the efficacy of single-
voxel MR spectroscopy findings in the setting of
metastatic disease can be made on the basis of our
results.

In contrast, placement of the voxel centrally
within the enhancing mass or inclusion of a sub-
stantial cavitary component within the voxel re-
sulted in correct classification of only two (22%)
of nine lesions, all of which were histologically
proved tumors. Because six of those lesions were
completely resected, it seems unlikely that histo-
logic sampling error alone could account for the
discrepancy. Furthermore, since six of the incor-
rectly classified lesions were newly diagnosed tu-
mors, effects of prior therapy could not have been
the source of error.

Also noteworthy is the fact that six patients stud-
ied had previously treated tumors. In such cases,
there is a legitimate clinical need to distinguish re-
current tumor from radiation necrosis so that the
appropriate therapy can be instituted in a timely
fashion. The ability to distinguish recurrent tumor
from radiation effects with MR spectroscopy is par-
ticularly important in light of the inability of con-
ventional CT and MR imaging and even 18F-fluo-
rodeoxyglucose positron emission tomography to
reliably make the distinction (46–53). In this study,
pattern analysis of single-voxel MR spectra cor-
rectly categorized all four treated lesions (three
cases of radiation necrosis, one recurrent tumor) in
which the voxel included the enhancing margin of
the tumor. In the remaining two patients (both with
recurrent tumor), placement of the voxel in the cen-

ter of the enhancing lesion resulted in incorrect cat-
egorization of the spectra by pattern analysis.

That voxel position is critical to the accuracy of
MR spectroscopy findings is supported by the
pathologic anatomy of tumors. High-grade glial tu-
mors, both treated and untreated, often undergo
central cavitation/necrosis, presumably because
they outgrow their blood supply. Placement of the
MR spectroscopy voxel in an obviously necrotic
portion of a tumor, be it treated or untreated, will
cause the resulting spectral pattern to be dominated
by the necrotic debris. Surprisingly, we found a
similar MR spectral pattern of ‘‘necrosis’’ from
spectra that were acquired from apparently solid
centers of some enhancing tumors. It has been sug-
gested that mobile lipids in necrotic foci below the
resolution of conventional MR imaging contribute
to such lipid signal on MR spectroscopy studies
(54). Still, the nearly complete absence of Cho in
the spectra of such lesions is curious. Placement of
a voxel at the leading edge of an enhancing lesion
appears to increase the likelihood of including vi-
able proliferating tumor in the spectroscopy volume
and to decrease the chance of including microscop-
ic foci of necrosis.

These results have potentially significant impli-
cations for the way single-voxel MR spectroscopy
studies are performed in patients with known or
suspected tumors. The critical dependence of voxel
position on the accuracy of single-voxel MR spec-
troscopy findings in our study suggests that single-
voxel studies in such patients should be performed
after administration of contrast material so that en-
hancement can be used to guide voxel position.
This in turn raises the important issue of the reli-
ability of MR spectroscopy findings in the presence
of gadolinium chelates. At present, this remains
controversial. Using a similar STEAM sequence to
ours, Taylor et al (55) concluded that gadolinium
chelates do not significantly affect metabolite levels
of brain tumors in vivo as measured by MR spec-
troscopy. More recently, Sijens et al (56) concluded
that ionic gadolinium chelates selectively reduce
the measured Cho level. Our own work suggests
that the effect of contrast material is variable and
highly dependent on the particular gadolinium che-
late used (57). It should be emphasized that despite
the potential effect of gadolinium on metabolite
levels and ratios, MR spectroscopy still correctly
identified seven of eight lesions in this study in
which the voxel was correctly positioned to include
the lesion margin. This suggests that MR spectros-
copy can reliably separate lesions into tumor and
nontumor categories despite the presence of gado-
linium. Clearly, further research is needed into the
nature of the effect of gadolinium on metabolite
levels as measured by MR spectroscopy.

Finally, because this was a retrospective study,
the results should be considered preliminary. A
prospective study in which single-voxel spectra are
acquired from the center and periphery of the same
lesion is required to clearly define the effect of vox-
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el position on the accuracy of MR spectroscopy
findings.

Conclusion
Our results suggest that voxel placement in sin-

gle-voxel MR spectroscopy studies of brain tumors
is critical to the accurate characterization of lesion
histopathology. Specifically, inclusion of the edge
of an enhancing lesion in the MR spectroscopy
voxel improves accuracy by maximizing the
amount of viable tumor within the imaging volume.
Voxel placement in the center of a lesion, whether
or not frank cavitation is evident on routine MR
images, increases the likelihood that cellular break-
down products will dominate the spectral pattern.
As computer speed improves and fully automated
spectral processing programs are developed, MR
spectroscopic imaging will become more widely
available and may well supplant the single-voxel
technique in many institutions. Voxel position will
then become less critical. Even if that occurs, our
results suggest spectroscopic information obtained
from the periphery of the lesion will be the most
important when evaluating lesion histopathology.
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