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Functional MR of the Primary Auditory Cortex: An Analysis of Pure
Tone Activation and Tone Discrimination

John C. Strainer, John L. Ulmer, F. Zerrin Yetkin, Victor M. Haughton, David L. Daniels, and Steven J. Millen

PURPOSE: To use functional MR imaging to measure the effect of frequency (pitch), intensity
(loudness), and complexity of auditory stimuli on activation in the primary and secondary auditory
cortexes. METHODS: Multiplanar echo-planar images were acquired in healthy subjects with
normal hearing to whom auditory stimuli were presented intermittently. Functional images were
processed from the echo-planar images with conventional postprocessing methods. The stimuli
included pure tones with a single frequency and intensity, pure tones with the frequency stepped
between 1000, 2000, 3000, or 4000 Hz, and spoken text. The pixels activated by each task in the
transverse temporal gyrus (TTG) and the auditory association areas were tabulated. RESULTS:
The pure tone task activated the TTG. The 1000-Hz tone activated significantly more pixels in the
TTG than did the 4000-Hz tone. The 4000-Hz tone activated pixels primarily in the medial TTG,
whereas the 1000-Hz tone activated more pixels in the lateral TTG. Higher intensity tones activated
significantly more pixels than did lower intensity tones at the same frequency. The stepped tones
activated more pixels than the pure tones, but the difference was not significant. The text task
produced significantly more activation than did the pure tones in the TTG and in the auditory
association areas. The more complex tasks (stepped tones and listening to text) tended to activate
more pixels in the left hemisphere than in the right, whereas the simpler tasks activated similar
numbers of pixels in each hemisphere. CONCLUSION: Auditory stimuli activate the TTG and the
association areas. Activation in the primary auditory cortex depends on frequency, intensity, and
complexity of the auditory stimulus. Activation of the auditory association areas requires more
complex auditory stimuli, such as the stepped tone task or text reading.
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Functional magnetic resonance (MR) imag-
ing is a relatively new technique for detecting
discrete areas of metabolic change within the
brain resulting from neuronal activity. Indirect
visualization of this neural activity is made pos-
sible by the accompanying changes in regional
cerebral blood flow (rCBF) and local blood de-
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oxyhemoglobin concentration within the acti-
vated cortex (1, 2). Functional MR imaging of-
fers anatomic detail not available with positron
emission tomography (PET) or other functional
imaging techniques and more precise localiza-
tion of activation centers within the cerebral
cortex. Investigators have shown the feasibility
of using functional MR imaging to examine ce-
rebral cortical activation in response to sensory,
motor, and tactile stimuli (3–6).

Recent studies with functional MR imaging
have shown consistent signal changes within
the superior temporal gyrus in response to var-
ious auditory stimuli (7, 8). Thus far, these re-
ports have described the effects of stimulus
rates and content of auditory stimuli on the pat-
tern of cortical activation from binaural stimuli.
The focus of these efforts has been the function
of auditory association areas in response to
these stimuli. A recent investigation has re-



Fig 1. Illustration of the TTG
(shaded area) of the superior tem-
poral gyrus (left), exposed by
partial resection of frontal and pa-
rietal lobes. Note oblique orienta-
tion of the gyrus and intermediate
transverse temporal sulcus, which
may be complete, partial, or non-
existent. The TTG (Heschel’s gy-
rus) contains the primary auditory
cortex. Coronal section through
the temporal lobe (right) shows
the location of the TTG (shaded
area) in relation to other brain ar-
eas (coronal section modified
from Duvernoy [56]).
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vealed activation within the primary auditory
cortex (transverse temporal gyrus [TTG]) in re-
sponse to a simple pure tone stimulus (9). To
date, the tonotopic organization of the primary
auditory cortex and the effect of tone intensity
on cortical activation have not been thoroughly
studied by means of functional MR imaging
techniques. The purpose of this study was to
investigate the functional integration of the pri-
mary auditory cortex and to develop tasks for
probing both the primary and association areas
of the auditory cortex. Specifically, our goal was
to examine the effects of tone frequency, tone
intensity, and tone complexity as they relate to
activation within the auditory cortex.

Subjects and Methods

Subjects

Ten volunteers (three women and seven men, 22 to 32
years old) were studied. All subjects reported good health
and no history of auditory abnormalities. All subjects were
right-handed as determined by the Edinburg handedness
inventory. Prior to testing, normal auditory thresholds were
confirmed in all subjects. In accordance with institutional
standards, all subjects gave written informed consent and
received an hourly stipend for their participation. Subjects
were positioned within the gantry after tightly occlusive ear
plugs were placed to minimize ambient noise, and they
were instructed not to move during image acquisitions.

Equipment and Scanning Procedure

A commercial 1.5-T scanner was used, equipped with a
bird-cage prototype whole-volume echo-planar local gra-
dient three-axis head coil. An experimental program pro-
vided a single-shot, blipped, echo-planar sequence with
multisection or multirepetition capabilities with either a
spin echo or gradient-echo. Chemical shift saturation was
used before the excitation pulse to diminish ghost artifacts
from the fat-containing tissues in the head.

A series of localizer images was obtained in the sagittal
and coronal planes. On the basis of these images, a coro-
nal plane was selected (Fig 1) for obtaining the anatomic
reference images upon which the functional data were
superimposed. These anatomic reference images were ob-
tained with parameters of 600/20/2 (repetition time/echo
time/excitations), 24-cm field of view, 128 3 256 matrix,
and 1-cm-thick sections.

Each functional image was generated from 90 images
obtained in the selected plane at 2-second intervals. A
series of 90 echo-planar images was collected, which con-
sisted of four 20-second stimulation intervals, during
which auditory stimuli were presented, alternating with
four 20-second rest intervals, during which no auditory
stimuli were presented (except ambient scanner noise).
Technical parameters for the functional data acquisition
included gradient echo-planar pulse sequences as follows:
2000/40, 64 3 64 matrix, 24-cm field of view, and 1-cm-
thick sections. The series of images was analyzed by view-
ing the images consecutively in cine mode to determine
whether the volunteer moved. If significant motion oc-
curred, images for that task were not included in the data
set. The time course of the signal intensity within each
pixel over 180 seconds was plotted and compared with a
reference pixel by means of an n-dimensional vector
cross-correlation program. For each task, only those pix-
els with clear, temporally correlated signal increases were
considered to be activated and subsequently selected for
referencing (Fig 2). Pixels that cross-correlated signifi-
cantly with the reference pixel (P , .0001) were displayed
in the functional images as activated pixels. The activated



pixels in the functional image were then overlayed on the
exactly corresponding coronal anatomic reference images
by means of the image processing program. Regional ac-
tivation was calculated as the number of pixels activated in
the TTG, which encompasses the primary auditory cortex.
Activated pixels were also assessed in the adjacent asso-
ciative auditory cortex. The region of interest in which
pixels were counted was identical for each subject.

Auditory Stimuli

Auditory stimuli were as follows: (a) pure tones of con-
stant intensity (20 or 50 dB above threshold) and fre-
quency (1000, 2000, 3000, or 4000 Hz) in separate series
of pulsed tones; (b) pure tones of constant intensity vary-
ing stepwise in frequency between 1, 2, 3, and 4 kHz; and
(c) written text read to the subject at constant sound in-
tensity (50 dB above threshold). Auditory stimuli during
each functional imaging series were delivered in four 20-
second intervals alternating with five 20-second rest inter-
vals. The presentation of separate tone series was coun-
terbalanced to minimize the effects of habituation or
learning. Pure tones were generated by a calibrated audi-
ometer. All auditory stimuli were delivered monaurally to

Fig 2. Signal intensity change over time is displayed in a
single pixel (arrow) of the superior temporal gyrus in an individual
subject. The horizontal axis of the pixel represents the total dura-
tion of an image series lasting 3 minutes (180 seconds), which
includes a series of four 20-second activation periods, alternating
with five 20-second rest periods. The vertical axis indicates a
percentage of signal change relative to the mean signal. The
active pixel as shown here, chosen for referencing, shows tempo-
ral increases in signal change corresponding in time course to the
auditory stimuli presented.
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the right ear via an air conduction speaker system
equipped with a pair of plastic tubes 4 ft in length. Detec-
tion thresholds were established separately for text reading
and for each frequency tone. In each subject, stimuli were
delivered at intensities that were 20 or 50 dB above the
subject’s threshold or sensation level (SL) (ie, 20 or 50 dB
SL). Thresholds were determined with the subject in the
gantry during scanner operation with the associated am-
bient scanner noise present.

Results

Pure Tone Activation of the Primary Auditory
Cortex

In all 10 subjects, pixels were activated over
background levels in the region corresponding
to the TTG after pure tone stimulation of 1000
Hz at 50 dB SL. On the other hand, only four of
six subjects showed activation at a pure tone
intensity of 20 dB SL. For 12 TTGs in six sub-
jects, the mean number of pixels activated with
a 20-dB SL stimulus was 4.3 compared with
11.0 with 50 dB SL, indicating a significantly
greater neuronal response to the higher inten-
sity (P , .05) (Fig 3). There was no significant
difference between right and left TTG activation
to pure tone stimuli, despite the fact that all
tones were delivered monaurally to the right
ear.

Primary Auditory Cortex: Response to Different
Frequencies

Our findings indicate an affinity of the pri-
mary auditory cortex for tones in the lower
(1000 to 2000 Hz) frequency range relative to
tones in the higher (3000 to 4000 Hz) frequency
range under our experimental conditions. This
effect is illustrated in Figure 4, in which the
number of pixels activated within the TTG is
greater in response to 1000 Hz than to 4000 Hz.
While all subjects showed TTG activation to a
1000-Hz tone stimulus, activation was detected
in only 50% of subjects at 4000 Hz. Figure 5
illustrates a graded increase in activation of the
TTG as tones of decreasing frequency were pre-
sented, resulting in a significantly greater num-
ber of pixels activated at 1000 Hz than at 4000
Hz (P , .01).

Analysis of tonotopic organization was per-
formed by comparing the location of activation
from low-frequency tones with high-frequency
tones. For the 1000-Hz tone, the proportion of
activated pixels in the lateral half of the TTG
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Fig 3. A, Coronal section
through the TTG shows no detect-
able TTG activation in response to
a 1000-Hz tone at 20 dB SL.

B, Image obtained from the
same subject shows pronounced
cortical activation within the right
TTG and a small amount of acti-
vation within the left TTG after de-
livery of a 1000-Hz pure tone at 50
dB SL.

Fig 4. A, Coronal section
shows prominent left and mild
right cortical activation within the
region of the TTG in response to a
1000-Hz pure tone (arrow indi-
cates activity more inferiorly in ar-
eas of auditory association cortex
of the left temporal lobe).

B, Coronal section obtained
from the same subject shows no
detectable cortical activity within
the TTG in response to a 4000-Hz
pure tone stimulus.
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was on average 67%. For the 4000-Hz tone, the
proportion of activated pixels in the medial half
of the TTG was 83%. Figures 6 and 7 illustrate
this tonotopic distribution with predominant lat-
eral activation following low-frequency stimula-
tion and medial activation with higher frequency
tones.

Auditory Cortex: Stepped Frequencies

Delivery of stepwise increasing tones from
1000 to 4000 Hz resulted in TTG activation
similar to that shown with single pure tone stim-
uli (Fig 8). However, an increased total area of
activation occurred when cortical areas outside
the TTG were considered. These additional ar-
eas of increased activity were located in adja-
cent cortex, clearly separate from the primary
auditory cortex. These regions have previously
been designated as the association auditory cor-
tex and their activation here may be an indicator
of functional tone discrimination. Although the
increased activation of the association cortex to
stepped tones was not statistically different
from that seen in response to pure tone stimuli,
a definite trend was observed (Fig 9). A nonsig-
nificant trend of dominant (left) hemisphere ac-
tivation in the association cortex was also ob-
served (Fig 9).

Auditory Cortex: Text Listening

As with stepwise tone delivery, listening to
text also resulted in activation of not only the
primary auditory cortex but also of the sur-
rounding areas of association cortex. The area
of activation in both the TTG (Fig 8) and the
association cortex (Fig 9) was significantly
greater than that seen with any other task (P ,
.05) (Fig 10), including the stepped frequen-
cies. A graded activation response was noted
with text listening, which activated more asso-
ciation cortex than stepped tones, which in turn
activated more than separate pure tones. As
with the stepped tones stimulus, a nonsignifi-
cant trend toward activation of the dominant
(left) hemisphere association cortex was ob-
served in response to listening to text (Fig 9).



AJNR: 18, April 1997 AUDITORY CORTEX 605
Discussion

The auditory cortex has been the subject of
numerous investigations in both humans and
animals. In 1937, Kornmuller (10) mapped the
auditory cortex in cats by recording electrical
responses to acoustical stimulation. Further
pathologic and animal studies showed the com-
plexity of the auditory cortex microstructure
and its processing of auditory stimuli (11–13).
In 1968, Braak (14) recorded human electrical
responses to auditory stimuli in the lateral tem-
poral lobe. Subsequently, efforts by Celesia and
others (15–17) have obtained electrical re-
sponses directly from the human primary audi-
tory cortex within the TTG (Heschel’s gyrus) as
well as from the posterosuperior temporal lobe
and frontoparietal opercular regions. These lat-

Fig 5. Mean number of pixels activated within the right and
left TTG in response to a variable range of frequencies from 1000
Hz to 4000 Hz (n 5 9). Note that low-frequency pure tones result
in significantly increased activation bilaterally within the TTG
compared with higher frequency pure tones.

Fig 6. Right and left TTG pixel activation displayed separately
in response to 1000-Hz and 4000-Hz pure tone stimuli (n 5 9).
Anatomic division of the TTG into medial and lateral segments
shows a greater proportion of cortical activation laterally in re-
sponse to lower frequency pure tones, whereas higher frequency
pure tones resulted in a proportionally greater medial activation.
ter areas of cortex have since been shown to
play a role in associative auditory processing in
animal species and humans (18–20).

More recently, newer imaging techniques,
such as PET and functional MR imaging, have
been used to study cerebral activation in re-
sponse to specific motor and sensory stimuli in
vivo (21–28). Responses of the auditory cortex
(ie, changes in rCBF) during a variety of listen-
ing tasks, including rhythm sequences (29),
tone sequences (30), single words (31), word
lists, and tone intensity discrimination (32),
have been evaluated with PET. However, these
studies were limited by their inability to measure
rCBF within the deep cortical regions (ie, TTG).
The functional organization of the primary au-
ditory cortex and surrounding areas of associa-
tive auditory cortex have since been studied by
others (33–37).

The feasibility of using functional MR imaging
to evaluate the primary auditory cortex has re-
cently been described (7–9). The superior tem-
poral gyrus is activated in the perception and
processing of auditory stimuli. Specifically, cor-
tical activation from within the superior tempo-
ral gyrus has been described in response to
nonspeech noise, meaningless speech noise,
single words, pure tone stimulation, and text
reading.

The results described in our investigation fur-
ther substantiate the feasibility and usefulness
of functional MR imaging in the evaluation of the
complex functional organization within the pri-
mary and association auditory cortex. Activa-
tion localized to the TTG was greater in re-
sponse to lower frequency tones than to higher
frequency tones. While it is possible that this
result was a function of our experimental con-
ditions (ie, ambient scanner noise), there was
no difference in detection thresholds across the
range of pure tone frequencies delivered to our
volunteers, and therefore all tones were deliv-
ered at a constant intensity level. Thus, this
finding could suggest an increased sensitivity of
the primary auditory cortex to lower frequency
stimuli, or it may indicate less efficient process-
ing of low-frequency tones with a subsequently
increased level of vascular recruitment. The
preferential response of individual cochlear
nerve cells to a specific sound frequency,
known as characteristic frequencies, has been
described (38). This spatial organization within
the cochlear apparatus enables appropriate re-
sponses to the full audible range of frequencies



Fig 7. Illustration of activation
distribution within the TTG in re-
sponse to 1000 Hz and 4000 Hz
pure tones. Note that a 1000-Hz
tone activates a larger area of cor-
tex with lateral TTG predomi-
nance, whereas activation in re-
sponse to a 4000-Hz tone is
relatively confined to the medial
aspect of the gyrus.
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perceived by humans (20 to 20 000 Hz). While
it is known that the ear has an increased sensi-
tivity to sounds between 500 and 8000 Hz,
no preferential cortical response to specific
frequencies within this range has yet been
described in humans. The mechanism and sig-
nificance of this greater activation with low-fre-
quency tones seen in our investigation are un-
certain and remain to be elucidated. However,
our findings indicate that future research and
clinical evaluation into the primary auditory
cortex using similar methods would be opti-
mized at frequencies near 1000 Hz.

Our results show a tonotopic relationship
within the TTG, supporting early histologic,

Fig 8. Mean number of pixels activated within the right and
left TTG in response to variable task stimulation. Note that while
no significant difference in activation is seen between 1000-Hz
pure tones (n 5 9) and stepped tones (n 5 7), listening to text
(n 5 9) results in significantly increased activity within both the
right and left TTG relative to the other auditory tasks.
evoked potential, magnetoencephalographic,
and PET studies (15, 39–41). We found pre-
dominant activation within the lateral portion of
the TTG with lower frequency tones (1000 Hz)
and a relative confinement of activity to the
medial portion of Heschel’s gyrus upon stimu-
lation with higher frequency tones (4000 Hz).
The structural tonotopic array of neurons within
the cochlear apparatus is maintained in the
complex neural pathways of the central audi-
tory centers (42). This tonotopic organization
was described by Woolsy et al (43) in 1943 and

Fig 9. Mean number of pixels activated within the right and
left auditory association cortex in response to three separate
auditory stimuli. Note that listening to text (n 5 9) results in
significantly increased activity within both hemispheres relative to
either stepped tones (n 5 7) or to a 1000-Hz pure tone (n 5 9).
While the difference in association cortex activation between
stepped tones and a 1000-Hz tone is not significant, a definite
trend toward increased activity with stepped tones stimulation is
noted. Additionally, a trend toward asymmetric activation within
the left (dominant) hemispheric association cortex is shown.



Fig 10. A, Coronal image ob-
tained through the TTG after acti-
vation with a 1000-Hz pure tone
delivered at 50 dB SL. Note the
activation localized primarily to
the TTG bilaterally.

B, Coronal image from the
same subject obtained in an iden-
tical location after listening to text.
Significantly increased activation
is noted not only within the region
of the TTG but also within the sur-
rounding association cortex.
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has also been demonstrated in recent PET stud-
ies (21). Functional MR imaging, with its ability
to detect this relationship, provides an addi-
tional noninvasive means for probing the func-
tional microstructure of the primary auditory
cortex and should have even greater potential
as higher resolution fast imaging techniques are
developed. These findings suggest that patho-
logic states affecting various frequency re-
sponses within the auditory centers may be
studied in the future with functional MR imaging.

Larger areas of activation were also noted
within the primary auditory cortex in response
to auditory stimuli of increasing intensities. To
date, this relationship has not been demon-
strated with PET imaging. Future technical re-
finements in functional MR imaging may further
improve temporal and spatial resolution and al-
low for even greater definition of sound ampli-
tude response within the primary auditory cor-
tex. The ear is not equally sensitive to all
frequencies. Greater intensities are required to
reach threshold at the lower and higher ends of
the frequency scale than in the medium range
(500 to 8000 Hz). However, the fact that less
cortical activation was detected with the lower
intensity tones most likely reflects the threshold
criteria used in our study rather than a true lack
of activation from such intensities. We investi-
gated a limited range of sound intensities (20
dB SL and 50 dB SL) and frequencies (1000
Hz). The extent to which the combined effects of
frequency and intensity variables affect activa-
tion is an additional subject for further research
with the use of similar functional MR imaging
methodology.
The sequencing of four tones produced
greater activation than did the individual tones
presented separately. In particular, greater ac-
tivation was noted in the auditory association
cortex with the presentation of the stepped fre-
quency tone series than with the pure tone stim-
ulus. The presentation of spoken text showed
even greater activation outside the primary au-
ditory cortex than did stepped tones. Our results
are in agreement with previous studies using
auditory evoked potentials, which showed
greater auditory cortical responses from modu-
lated tones than from steady tones (44). Addi-
tionally, previous PET and functional MR imag-
ing studies have shown activation localized to
the TTG in response to nonspeech (white)
noise, whereas more widespread cortical acti-
vation has been detected in response to speech
(8, 45). Tone stimuli delivered rhythmically also
resulted in rCBF increases in auditory associa-
tion areas within the superior temporal gyrus
(29). Findings in our study offer further evi-
dence to support the hypothesis that the asso-
ciation cortex is active in tone discrimination. A
greater variety of frequencies should be studied.
Additionally, studying activation patterns in
musicians and nonmusicians may help us un-
derstand the organization of auditory process-
ing.

The finding that spoken text results in greater
activation in areas of association cortex than
that produced by nonverbal cues may be attrib-
uted to the cognitive processing required in the
analysis of spoken words (21, 44, 46). In the-
ory, then, the finding may be due to the activa-
tion of additional areas of cortex known as the
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semantic system (47–50), which requires pro-
cess activation and implementation of previ-
ously learned meaningful phenomes, word
groups, and associations. These cognitive pro-
cesses may occur without the subject’s aware-
ness (51, 52). Another explanation for these
findings is that the modulation present within
spoken text is processed at a higher level within
the auditory association cortex than are non-
word stimuli. Future investigations of the pat-
terns of brain activation in response to verbal
and nonverbal stimuli may illuminate the cog-
nitive pathways used in the processing of se-
mantic stimuli.

Several authors have described relationships
between monaural or binaural stimulation as it
relates to sidedness of cortical stimulation. Re-
sults in this area have been inconsistent from
investigation to investigation. Some reports
show increased contralateral temporal lobe ac-
tivation with monaural stimulation (17–27, 29–33,
35, 53, 54). Nishizawa et al (55) showed a left
hemispheric activation dominance in response
to speech stimuli and a right-sided dominance
with nonverbal stimuli. Other investigators, us-
ing both PET and functional MR imaging tech-
niques, have shown no significant difference in
symmetry of cerebral activation (7, 34). Our
results agree with these later findings in that
they showed no significant asymmetry in TTG
activation, although a trend toward left-domi-
nant association cortex activation was seen with
the presentation of increasingly complex stim-
uli. Nevertheless, the reason for these discrep-
ancies in the literature remains unknown. Sym-
metry of cerebral activation may in part be
determined by stimulus content and/or mode of
presentation. Additionally, the variability of im-
aging techniques in terms of their capacity to
effectively quantitate activation magnitude may
play a role in contributing to these apparent
inconsistencies. Future work should help eluci-
date the various factors affecting symmetry of
brain activation.

Our results demonstrate the usefulness of
functional MR imaging in investigating the func-
tional anatomy and processing pathways of the
primary auditory cortex. Future studies should
produce higher spatial resolution and better de-
fine the optimal methods for probing the audi-
tory cortex. The clinical application of these
techniques should be considered. Theoretical
uses include differentiation of functional from
nonorganic hearing loss and central from pe-
ripheral hearing loss. Additionally, functional
MR imaging may prove useful in preoperative
testing of cochlear implant patients. Since this
imaging technique avoids the subjectivity inher-
ent in audiometric testing, it may also prove
useful in the evaluation of psychogenic auditory
disorders.

In conclusion, we have shown the feasibility
of using functional MR imaging to assess the
functional organization of the primary auditory
cortex. With the use of simple auditory stimuli,
we showed greater primary auditory cortex ac-
tivation in response to tones of increasing inten-
sity. Additionally, increased activation of the
primary auditory cortex to tones of lower fre-
quency (;1000 Hz) was shown, as was the
tonotopic organization within the primary audi-
tory cortex. Areas of activation were described
outside the primary auditory cortex within re-
gions of the auditory association cortex in re-
sponse to graded/stepwise frequency tones and
spoken text. Future investigations are expected
to produce refinements in technique and further
information regarding the functional organiza-
tion of the primary auditory cortex.
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